Ambient-condition acetylene hydrogenation to ethylene over WS2-confined atomic Pd sites

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wangwang Zhang, Kelechi Uwakwe, Jingting Hu, Yan Wei, Juntong Zhu, Wu Zhou, Chao Ma, Liang Yu, Rui Huang, Dehui Deng
{"title":"Ambient-condition acetylene hydrogenation to ethylene over WS2-confined atomic Pd sites","authors":"Wangwang Zhang, Kelechi Uwakwe, Jingting Hu, Yan Wei, Juntong Zhu, Wu Zhou, Chao Ma, Liang Yu, Rui Huang, Dehui Deng","doi":"10.1038/s41467-024-53481-1","DOIUrl":null,"url":null,"abstract":"<p>Ambient-condition acetylene hydrogenation to ethylene (AC-AHE) is a promising process for ethylene production with minimal additional energy input, yet remains a great challenge due to the difficulty in the coactivation of acetylene and H<sub>2</sub> at room temperature. Herein, we report a highly efficient AC-AHE process over robust sulfur-confined atomic Pd species on tungsten sulfide surface. The catalyst exhibits over 99% acetylene conversion with a high ethylene selectivity of 70% at 25 <sup>o</sup>C, and a record space-time yield of ethylene of 1123 mol<sub>C2H4</sub> mol<sub>Pd</sub><sup>−1</sup> h<sup>−1</sup> under ambient conditions, which is nearly four times that of the typical Pd<sub>1</sub>Ag<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst, and exhibiting superior stability of over 500 h. We demonstrate that the confinement of Pd-S coordination induces positively-charged atomic Pd<sup>δ+</sup>, which not only facilitates C<sub>2</sub>H<sub>2</sub> hydrogenation but also promotes C<sub>2</sub>H<sub>4</sub> desorption, thereby enabling a high conversion of C<sub>2</sub>H<sub>2</sub> to C<sub>2</sub>H<sub>4</sub> at room temperature while suppressing over-hydrogenation to C<sub>2</sub>H<sub>6</sub>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53481-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ambient-condition acetylene hydrogenation to ethylene (AC-AHE) is a promising process for ethylene production with minimal additional energy input, yet remains a great challenge due to the difficulty in the coactivation of acetylene and H2 at room temperature. Herein, we report a highly efficient AC-AHE process over robust sulfur-confined atomic Pd species on tungsten sulfide surface. The catalyst exhibits over 99% acetylene conversion with a high ethylene selectivity of 70% at 25 oC, and a record space-time yield of ethylene of 1123 molC2H4 molPd−1 h−1 under ambient conditions, which is nearly four times that of the typical Pd1Ag3/Al2O3 catalyst, and exhibiting superior stability of over 500 h. We demonstrate that the confinement of Pd-S coordination induces positively-charged atomic Pdδ+, which not only facilitates C2H2 hydrogenation but also promotes C2H4 desorption, thereby enabling a high conversion of C2H2 to C2H4 at room temperature while suppressing over-hydrogenation to C2H6.

Abstract Image

在 WS2 封闭原子钯位点上进行乙炔加氢制乙烯的环境条件研究
环境条件下乙炔加氢制乙烯(AC-AHE)是一种前景广阔的乙烯生产工艺,只需极少的额外能量输入,但由于乙炔和 H2 在室温下难以共同活化,该工艺仍面临巨大挑战。在此,我们报告了一种在硫化钨表面的强硫封闭原子钯物种上的高效 AC-AHE 工艺。该催化剂在 25 oC 时乙炔转化率超过 99%,乙烯选择性高达 70%,在环境条件下乙烯的时空产率达到创纪录的 1123 molC2H4 molPd-1 h-1,几乎是典型 Pd1Ag3/Al2O3 催化剂的四倍,并表现出超过 500 h 的卓越稳定性。我们证明,Pd-S 配位的限制诱导了带正电荷的原子 Pdδ+,这不仅有利于 C2H2 加氢,还能促进 C2H4 解吸,从而在室温下实现 C2H2 向 C2H4 的高转化率,同时抑制向 C2H6 的过度加氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信