QCD Predictions for Meson Electromagnetic Form Factors at High Momenta: Testing Factorization in Exclusive Processes

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Heng-Tong Ding, Xiang Gao, Andrew D. Hanlon, Swagato Mukherjee, Peter Petreczky, Qi Shi, Sergey Syritsyn, Rui Zhang, Yong Zhao
{"title":"QCD Predictions for Meson Electromagnetic Form Factors at High Momenta: Testing Factorization in Exclusive Processes","authors":"Heng-Tong Ding, Xiang Gao, Andrew D. Hanlon, Swagato Mukherjee, Peter Petreczky, Qi Shi, Sergey Syritsyn, Rui Zhang, Yong Zhao","doi":"10.1103/physrevlett.133.181902","DOIUrl":null,"url":null,"abstract":"We report the first lattice QCD computation of pion and kaon electromagnetic form factors, <mjx-container ctxtmenu_counter=\"21\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(10 (2 0 1) 9 (8 3 (6 4 5) 7))\"><mjx-mrow data-semantic-children=\"2,8\" data-semantic-content=\"9,0\" data-semantic- data-semantic-owns=\"2 9 8\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper F Subscript upper M Baseline left parenthesis upper Q squared right parenthesis\" data-semantic-type=\"appl\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"10\" data-semantic-role=\"simple function\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"2\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝐹</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.051em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"10\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"6\" data-semantic-content=\"3,7\" data-semantic- data-semantic-owns=\"3 6 7\" data-semantic-parent=\"10\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑄</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, at large momentum transfer up to 10 and <mjx-container ctxtmenu_counter=\"22\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,1,2,5\" data-semantic-collapsed=\"(9 (c 6 7 8) 0 1 2 5)\" data-semantic- data-semantic-owns=\"0 1 2 5\" data-semantic-role=\"text\" data-semantic-speech=\"28 upper G e upper V squared\" data-semantic-structure=\"(9 0 1 2 (5 3 4))\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">2</mjx-c><mjx-c style=\"padding-top: 0.647em;\">8</mjx-c></mjx-mn><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-msup data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">G</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">e</mjx-c><mjx-c style=\"padding-top: 0.669em;\">V</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.396em; margin-left: 0.05em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container>, respectively. Utilizing physical masses and two fine lattices, we achieve good agreement with JLab experimental results at <mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"10,5,6,9\" data-semantic-collapsed=\"(14 (c 11 12 13) 10 5 6 9)\" data-semantic- data-semantic-owns=\"10 5 6 9\" data-semantic-role=\"text\" data-semantic-speech=\"upper Q squared less than or equivalent to 4 upper G e upper V squared\" data-semantic-structure=\"(14 (10 (2 0 1) 3 4) 5 6 (9 7 8))\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\" inline-breaks=\"true\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑄</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≲\" data-semantic-parent=\"10\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>4</mjx-c></mjx-mn></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-msup data-semantic-children=\"7,8\" data-semantic- data-semantic-owns=\"7 8\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">G</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">e</mjx-c><mjx-c style=\"padding-top: 0.669em;\">V</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.396em; margin-left: 0.05em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container>. For <mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"10,5,6,9\" data-semantic-collapsed=\"(14 (c 11 12 13) 10 5 6 9)\" data-semantic- data-semantic-owns=\"10 5 6 9\" data-semantic-role=\"text\" data-semantic-speech=\"upper Q squared greater than or equivalent to 4 upper G e upper V squared\" data-semantic-structure=\"(14 (10 (2 0 1) 3 4) 5 6 (9 7 8))\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\" inline-breaks=\"true\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑄</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≳\" data-semantic-parent=\"10\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≳</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>4</mjx-c></mjx-mn></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-msup data-semantic-children=\"7,8\" data-semantic- data-semantic-owns=\"7 8\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">G</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">e</mjx-c><mjx-c style=\"padding-top: 0.669em;\">V</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.396em; margin-left: 0.05em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container>, our results provide <i>ab initio</i> QCD benchmarks for the forthcoming experiments at JLab 12 GeV and future electron-ion colliders. We also test the QCD collinear factorization framework utilizing our high-<mjx-container ctxtmenu_counter=\"25\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Q squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑄</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> form factors at next-to-next-to-leading order in perturbation theory, which relates the form factors to the leading Fock-state meson distribution amplitudes. Comparisons with independent lattice QCD calculations using the same framework demonstrate, within estimated uncertainties, the universality of these nonperturbative quantities.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"240 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.181902","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report the first lattice QCD computation of pion and kaon electromagnetic form factors, 𝐹𝑀(𝑄2), at large momentum transfer up to 10 and 28GeV2, respectively. Utilizing physical masses and two fine lattices, we achieve good agreement with JLab experimental results at 𝑄24GeV2. For 𝑄24GeV2, our results provide ab initio QCD benchmarks for the forthcoming experiments at JLab 12 GeV and future electron-ion colliders. We also test the QCD collinear factorization framework utilizing our high-𝑄2 form factors at next-to-next-to-leading order in perturbation theory, which relates the form factors to the leading Fock-state meson distribution amplitudes. Comparisons with independent lattice QCD calculations using the same framework demonstrate, within estimated uncertainties, the universality of these nonperturbative quantities.
高动量下介子电磁形式因子的 QCD 预测:测试排他性过程中的因式分解
我们首次报告了对先驱和高昂子电磁形式因子↪Lu_1D439𝑀(𝑄2)的格子QCD计算,其大动量转移分别高达10 GeV2和28 GeV2。利用物理质量和两个精细晶格,我们在𝑄2≲4 GeV2时取得了与JLab实验结果的良好一致性。对于 𝑄2≳4 GeV2,我们的结果为即将在 JLab 12 GeV 和未来电子-离子对撞机上进行的实验提供了自证 QCD 基准。我们还利用我们的高𝑄2形式因子测试了QCD碰撞因式分解框架的次领先阶扰动理论,它将形式因子与领先的福克态介子分布振幅联系起来。在估计的不确定性范围内,与使用相同框架进行的独立格子 QCD 计算进行比较,证明了这些非微扰量的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信