Transient spin modes from relaxational axial kinetic theory

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Shu Lin, Haiqin Tang
{"title":"Transient spin modes from relaxational axial kinetic theory","authors":"Shu Lin, Haiqin Tang","doi":"10.1103/physrevd.110.074042","DOIUrl":null,"url":null,"abstract":"We study the dynamics of spin mode by solving the axial kinetic equations under the relaxation time approximation in the presence of dissipative sources. We find transient spin modes in response to the electric field with spacetime inhomogeneity, fluid acceleration and shear. To the lowest order in spatial momentum <mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"k\" data-semantic-type=\"identifier\"><mjx-c>𝑘</mjx-c></mjx-mi></mjx-math></mjx-container>, we find the responses to electric field and acceleration can be interpreted as a retarded response to temporal variations of the magnetic field and vorticity respectively. The response to shear occurs at <mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,6\" data-semantic-content=\"7,0\" data-semantic- data-semantic-owns=\"0 7 6\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis k squared right parenthesis\" data-semantic-structure=\"(8 0 7 (6 1 (4 2 3) 5))\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑂</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"1,5\" data-semantic- data-semantic-owns=\"1 4 5\" data-semantic-parent=\"8\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑘</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> and can be reduced to a retarded response to the spatial variation of vorticity. Beyond lowest order, the responses to all three sources are nonlocal with branch cut in the dispersions. We argue that the nonlocality is a consequence of the quasiparticle picture underlying the kinetic description. We also analyze the spin transport equation taking into account the spin response to temporal and spatial variations of vorticity. We find the corrections turn the original first order spin transport equation into a third order one (or a second order one in the homogeneous limit). The change in order of the transport equation is a consequence of the nonlocal nature of the responses, suggesting a possible breakdown of gradient expansion in spin hydrodynamics for microscopic theories with quasiparticles.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"26 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.074042","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We study the dynamics of spin mode by solving the axial kinetic equations under the relaxation time approximation in the presence of dissipative sources. We find transient spin modes in response to the electric field with spacetime inhomogeneity, fluid acceleration and shear. To the lowest order in spatial momentum 𝑘, we find the responses to electric field and acceleration can be interpreted as a retarded response to temporal variations of the magnetic field and vorticity respectively. The response to shear occurs at 𝑂(𝑘2) and can be reduced to a retarded response to the spatial variation of vorticity. Beyond lowest order, the responses to all three sources are nonlocal with branch cut in the dispersions. We argue that the nonlocality is a consequence of the quasiparticle picture underlying the kinetic description. We also analyze the spin transport equation taking into account the spin response to temporal and spatial variations of vorticity. We find the corrections turn the original first order spin transport equation into a third order one (or a second order one in the homogeneous limit). The change in order of the transport equation is a consequence of the nonlocal nature of the responses, suggesting a possible breakdown of gradient expansion in spin hydrodynamics for microscopic theories with quasiparticles.
来自弛豫轴向动力学理论的瞬态自旋模式
在耗散源存在的情况下,我们通过求解弛豫时间近似下的轴向动力学方程研究了自旋模式的动力学。我们发现了瞬态自旋模式对时空不均匀性电场、流体加速度和剪切力的响应。在空间动量𝑘的最低阶,我们发现对电场和加速度的响应可分别解释为对磁场和涡度时变的迟滞响应。对剪切力的响应发生在 𝑂(𝑘2)处,可以简化为对涡度空间变化的延迟响应。超过最低阶后,对所有三个源的响应都是非局域的,分散中存在分支切割。我们认为这种非局部性是动力学描述所依据的准粒子图景的结果。我们还分析了自旋输运方程,并考虑了自旋对涡度时空变化的响应。我们发现这些修正将原来的一阶自旋输运方程变成了三阶(或在均质极限中变成了二阶)。输运方程阶数的变化是反应的非局域性的结果,表明对于具有准粒子的微观理论,自旋流体力学中的梯度扩展可能会被打破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信