Joseph P. Conlon, Edmund J. Copeland, Edward Hardy, Noelia Sánchez González
{"title":"Percolating cosmic string networks from kination","authors":"Joseph P. Conlon, Edmund J. Copeland, Edward Hardy, Noelia Sánchez González","doi":"10.1103/physrevd.110.083537","DOIUrl":null,"url":null,"abstract":"We describe a new mechanism, whose ingredients are realized in string compactifications, for the formation of cosmic (super)string networks. Oscillating string loops grow when their tension <mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"mu\" data-semantic-type=\"identifier\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-math></mjx-container> decreases with time. If <mjx-container ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"12,9\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"12 8 9\" data-semantic-role=\"inequality\" data-semantic-speech=\"2 upper H plus ModifyingAbove mu With dot divided by mu less than 0\" data-semantic-structure=\"(14 (12 (11 0 10 1) 2 (13 (5 3 4) 6 7)) 8 9)\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"11,13\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"11 2 13\" data-semantic-parent=\"14\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" inline-breaks=\"true\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"10\" data-semantic- data-semantic-owns=\"0 10 1\" data-semantic-parent=\"12\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐻</mjx-c></mjx-mi></mjx-mrow><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"12\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"5,7\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"5 6 7\" data-semantic-parent=\"12\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"3\"><mjx-mover data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"13\" data-semantic-role=\"greekletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.355em; margin-bottom: -0.56em;\"><mjx-mo data-semantic-annotation=\"accent:overaccent\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"overaccent\" data-semantic-type=\"punctuation\" style=\"width: 0px; margin-left: -0.097em;\"><mjx-c>˙</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"13\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,<\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c><</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>0</mjx-c></mjx-mn></mjx-math></mjx-container>, where <mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper H\" data-semantic-type=\"identifier\"><mjx-c>𝐻</mjx-c></mjx-mi></mjx-math></mjx-container> is the Hubble parameter, loops grow faster than the scale factor and an initial population of isolated small loops (for example, produced by nucleation) can grow, percolate, and form a network. This condition is satisfied for fundamental strings in the background of a kinating volume modulus rolling toward the asymptotic large volume region of moduli space. Such long kination epochs are motivated in string cosmology by both the electroweak hierarchy problem and the need to solve the overshoot problem. The tension of such a network today is set by the final vacuum; for phenomenologically appealing large volume scenario vacua, this would lead to a fundamental string network with <mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"9,7\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"9 2 7\" data-semantic-role=\"equality\" data-semantic-speech=\"upper G mu tilde 10 Superscript negative 10\" data-semantic-structure=\"(10 (9 0 8 1) 2 (7 3 (6 4 5)))\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"0 8 1\" data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐺</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-mrow><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"10\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>∼</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"3,6\" data-semantic- data-semantic-owns=\"3 6\" data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"5\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-math></mjx-container>.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.083537","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a new mechanism, whose ingredients are realized in string compactifications, for the formation of cosmic (super)string networks. Oscillating string loops grow when their tension 𝜇 decreases with time. If 2𝐻+˙𝜇/𝜇<0, where 𝐻 is the Hubble parameter, loops grow faster than the scale factor and an initial population of isolated small loops (for example, produced by nucleation) can grow, percolate, and form a network. This condition is satisfied for fundamental strings in the background of a kinating volume modulus rolling toward the asymptotic large volume region of moduli space. Such long kination epochs are motivated in string cosmology by both the electroweak hierarchy problem and the need to solve the overshoot problem. The tension of such a network today is set by the final vacuum; for phenomenologically appealing large volume scenario vacua, this would lead to a fundamental string network with 𝐺𝜇∼10−10.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.