Commutator technique for the heat kernel of minimal higher derivative operators

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
A. O. Barvinsky, A. V. Kurov, W. Wachowski
{"title":"Commutator technique for the heat kernel of minimal higher derivative operators","authors":"A. O. Barvinsky, A. V. Kurov, W. Wachowski","doi":"10.1103/physrevd.110.085023","DOIUrl":null,"url":null,"abstract":"We suggest a new technique of the asymptotic heat kernel expansion for minimal higher derivative operators of a generic <mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"2 upper M\" data-semantic-structure=\"(3 0 2 1)\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-math></mjx-container>th order, <mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"18,19\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"18 4 19\" data-semantic-role=\"equality\" data-semantic-speech=\"upper F left parenthesis nabla right parenthesis equals left parenthesis minus white square right parenthesis Superscript upper M Baseline plus midline horizontal ellipsis\" data-semantic-structure=\"(20 (18 0 17 (13 1 2 3)) 4 (19 (10 (16 5 (15 6 7 14) 8) 9) 11 12))\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,13\" data-semantic-content=\"17,0\" data-semantic- data-semantic-owns=\"0 17 13\" data-semantic-parent=\"20\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝐹</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"18\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"20\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"10,12\" data-semantic-content=\"11\" data-semantic- data-semantic-owns=\"10 11 12\" data-semantic-parent=\"20\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"4\"><mjx-msup data-semantic-children=\"16,9\" data-semantic-fencepointer=\"8\" data-semantic- data-semantic-owns=\"16 9\" data-semantic-parent=\"19\" data-semantic-role=\"leftright\" data-semantic-type=\"superscript\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"15\" data-semantic-content=\"5,8\" data-semantic- data-semantic-owns=\"5 15 8\" data-semantic-parent=\"10\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"6,14\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"6 7 14\" data-semantic-parent=\"16\" data-semantic-role=\"geometry\" data-semantic-type=\"relseq\"><mjx-mo data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"relseq,□\" data-semantic-parent=\"15\" data-semantic-role=\"geometry\" data-semantic-type=\"relation\"><mjx-c>□</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-script></mjx-msup><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"19\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"ellipsis\" data-semantic-type=\"punctuation\" space=\"3\"><mjx-c>⋯</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container>, in the background field formalism of gauge theories and quantum gravity. This technique represents the conversion of the recently suggested Fourier integral method of generalized exponential functions [A. O. Barvinsky and W. Wachowski, Heat kernel expansion for higher order minimal and nonminimal operators, <span>Phys. Rev. D</span> <b>105</b>, 065013 (2022)] into the commutator algebra of special differential operators, which allows one to express expansion coefficients for <mjx-container ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper F left parenthesis nabla right parenthesis\" data-semantic-structure=\"(6 0 5 (4 1 2 3))\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝐹</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> in terms of the Schwinger-DeWitt coefficients of a minimal second-order operator <mjx-container ctxtmenu_counter=\"14\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper H left parenthesis nabla right parenthesis\" data-semantic-structure=\"(6 0 5 (4 1 2 3))\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝐻</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container>. This procedure is based on special functorial properties of the formalism including the Mellin-Barnes representation of the complex operator power <mjx-container ctxtmenu_counter=\"15\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"2,6\" data-semantic-content=\"7,0\" data-semantic- data-semantic-owns=\"2 7 6\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper H Superscript upper M Baseline left parenthesis nabla right parenthesis\" data-semantic-structure=\"(8 (2 0 1) 7 (6 3 4 5))\" data-semantic-type=\"appl\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"8\" data-semantic-role=\"simple function\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"2\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝐻</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em; margin-left: 0.052em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-script></mjx-msup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"3,5\" data-semantic- data-semantic-owns=\"3 4 5\" data-semantic-parent=\"8\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> and naturally leads to the origin of generalized exponential functions without directly appealing to the Fourier integral method. The algorithm is essentially more straightforward than the Fourier method and consists of three steps ready for a computer codification by symbolic manipulation programs. They begin with the decomposition of the operator into a power of some minimal second-order operator <mjx-container ctxtmenu_counter=\"16\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper H left parenthesis nabla right parenthesis\" data-semantic-structure=\"(6 0 5 (4 1 2 3))\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝐻</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> and its lower derivative perturbation part <mjx-container ctxtmenu_counter=\"17\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper W left parenthesis nabla right parenthesis\" data-semantic-structure=\"(6 0 5 (4 1 2 3))\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑊</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container>, <mjx-container ctxtmenu_counter=\"18\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"24,25\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"24 4 25\" data-semantic-role=\"equality\" data-semantic-speech=\"upper F left parenthesis nabla right parenthesis equals upper H Superscript upper M Baseline left parenthesis nabla right parenthesis plus upper W left parenthesis nabla right parenthesis\" data-semantic-structure=\"(26 (24 0 23 (16 1 2 3)) 4 (25 (22 (7 5 6) 21 (17 8 9 10)) 11 (20 12 19 (18 13 14 15))))\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,16\" data-semantic-content=\"23,0\" data-semantic- data-semantic-owns=\"0 23 16\" data-semantic-parent=\"26\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"24\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝐹</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"24\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"24\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"26\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"22,20\" data-semantic-content=\"11\" data-semantic- data-semantic-owns=\"22 11 20\" data-semantic-parent=\"26\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"4\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,17\" data-semantic-content=\"21,5\" data-semantic- data-semantic-owns=\"7 21 17\" data-semantic-parent=\"25\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-msup data-semantic-children=\"5,6\" data-semantic- data-semantic-owns=\"5 6\" data-semantic-parent=\"22\" data-semantic-role=\"simple function\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝐻</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em; margin-left: 0.052em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-script></mjx-msup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"22\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"9\" data-semantic-content=\"8,10\" data-semantic- data-semantic-owns=\"8 9 10\" data-semantic-parent=\"22\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"25\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"12,18\" data-semantic-content=\"19,12\" data-semantic- data-semantic-owns=\"12 19 18\" data-semantic-parent=\"25\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\" space=\"3\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"20\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑊</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"20\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"14\" data-semantic-content=\"13,15\" data-semantic- data-semantic-owns=\"13 14 15\" data-semantic-parent=\"20\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"18\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"18\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"18\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, followed by considering their multiple nested commutators. The second step is the construction of special local differential operators—the perturbation theory in powers of the lower derivative part <mjx-container ctxtmenu_counter=\"19\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper W left parenthesis nabla right parenthesis\" data-semantic-structure=\"(6 0 5 (4 1 2 3))\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑊</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container>. The final step is the so-called procedure of their “Syngification,” consisting of a special modification of the covariant derivative monomials in these operators by the Synge world function <mjx-container ctxtmenu_counter=\"20\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,9\" data-semantic-content=\"10,0\" data-semantic- data-semantic-owns=\"0 10 9\" data-semantic-role=\"simple function\" data-semantic-speech=\"sigma left parenthesis x comma x Superscript prime Baseline right parenthesis\" data-semantic-structure=\"(11 0 10 (9 1 (8 2 3 (6 4 5)) 7))\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"11\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝜎</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"11\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"8\" data-semantic-content=\"1,7\" data-semantic- data-semantic-owns=\"1 8 7\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,3,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-parent=\"9\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑥</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"8\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\" space=\"2\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑥</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mo data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"prime\" data-semantic-type=\"punctuation\" size=\"s\"><mjx-c>′</mjx-c></mjx-mo></mjx-script></mjx-msup></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> with their subsequent action on the Hadamard-Minakshisundaram-DeWitt coefficients of <mjx-container ctxtmenu_counter=\"21\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper H left parenthesis nabla right parenthesis\" data-semantic-structure=\"(6 0 5 (4 1 2 3))\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝐻</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mo data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c>∇</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container>.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"67 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.085023","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We suggest a new technique of the asymptotic heat kernel expansion for minimal higher derivative operators of a generic 2𝑀th order, 𝐹()=()𝑀+, in the background field formalism of gauge theories and quantum gravity. This technique represents the conversion of the recently suggested Fourier integral method of generalized exponential functions [A. O. Barvinsky and W. Wachowski, Heat kernel expansion for higher order minimal and nonminimal operators, Phys. Rev. D 105, 065013 (2022)] into the commutator algebra of special differential operators, which allows one to express expansion coefficients for 𝐹() in terms of the Schwinger-DeWitt coefficients of a minimal second-order operator 𝐻(). This procedure is based on special functorial properties of the formalism including the Mellin-Barnes representation of the complex operator power 𝐻𝑀() and naturally leads to the origin of generalized exponential functions without directly appealing to the Fourier integral method. The algorithm is essentially more straightforward than the Fourier method and consists of three steps ready for a computer codification by symbolic manipulation programs. They begin with the decomposition of the operator into a power of some minimal second-order operator 𝐻() and its lower derivative perturbation part 𝑊(), 𝐹()=𝐻𝑀()+𝑊(), followed by considering their multiple nested commutators. The second step is the construction of special local differential operators—the perturbation theory in powers of the lower derivative part 𝑊(). The final step is the so-called procedure of their “Syngification,” consisting of a special modification of the covariant derivative monomials in these operators by the Synge world function 𝜎(𝑥,𝑥) with their subsequent action on the Hadamard-Minakshisundaram-DeWitt coefficients of 𝐻().
最小高阶导数算子热核的换元技术
我们提出了一种在规整理论和量子引力的背景场形式中对一般 2𝑀阶极小高导数算子 𝐹(∇)=(-□)𝑀+⋯进行渐近热核展开的新技术。这一技术代表了最近提出的广义指数函数傅里叶积分法的转换[A.O.Barvinsky and W. Wachowski, Heat kernel expansion for higher order minimal and nonminimal operators, Phys. Rev. D 105, 065013 (2022)]转换为特殊微分算子的换元代数,从而可以用最小二阶算子𝐹(∇)的施文格-德维特系数来表达𝐹(∇)的膨胀系数。这一过程基于形式主义的特殊扇形特性,包括复算子幂𝐻𝑀(∇)的梅林-巴恩斯表示,无需直接诉诸傅里叶积分法,即可自然地得出广义指数函数的起源。该算法本质上比傅里叶积分法更直接,由三个步骤组成,可通过符号操作程序进行计算机编码。首先是将算子分解为某个最小二阶算子𝐻(∇)的幂和它的低导数扰动部分𝐹(∇),𝐹(∇)=𝐻𝑀(∇)+𝐻(∇),然后考虑它们的多重嵌套换向器。第二步是构建特殊的局部微分算子--下导数部分幂级数的扰动理论 ᵃ(∇)。最后一步是所谓的 "Syngification "过程,包括用辛格世界函数𝜎(𝑥,𝑥′)对这些算子中的协变导数单项式进行特殊修正,然后作用于𝐻(∇)的哈达玛-米纳克希孙达拉姆-德维特系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信