Manish Ayushman, Georgios Mikos, Xinming Tong, Sauradeep Sinha, Eunice Lopez-Fuentes, Sarah Jones, Pamela C. Cai, Hung-Pang Lee, Ashby J. Morrison, Andrew Spakowitz, Sarah C. Heilshorn, Alejandro Sweet-Cordero, Fan Yang
{"title":"Cell tumbling enhances stem cell differentiation in hydrogels via nuclear mechanotransduction","authors":"Manish Ayushman, Georgios Mikos, Xinming Tong, Sauradeep Sinha, Eunice Lopez-Fuentes, Sarah Jones, Pamela C. Cai, Hung-Pang Lee, Ashby J. Morrison, Andrew Spakowitz, Sarah C. Heilshorn, Alejandro Sweet-Cordero, Fan Yang","doi":"10.1038/s41563-024-02038-0","DOIUrl":null,"url":null,"abstract":"<p>Cells can deform their local niche in three dimensions via whole-cell movements such as spreading, migration or volume expansion. These behaviours, occurring over hours to days, influence long-term cell fates including differentiation. Here we report a whole-cell movement that occurs in sliding hydrogels at the minutes timescale, termed cell tumbling, characterized by three-dimensional cell dynamics and hydrogel deformation elicited by heightened seconds-to-minutes-scale cytoskeletal and nuclear activity. Studies inhibiting or promoting the cell tumbling of mesenchymal stem cells show that this behaviour enhances differentiation into chondrocytes. Further, it is associated with a decrease in global chromatin accessibility, which is required for enhanced differentiation. Cell tumbling also occurs during differentiation into other lineages and its differentiation-enhancing effects are validated in various hydrogel platforms. Our results establish that cell tumbling is an additional regulator of stem cell differentiation, mediated by rapid niche deformation and nuclear mechanotransduction.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"22 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02038-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cells can deform their local niche in three dimensions via whole-cell movements such as spreading, migration or volume expansion. These behaviours, occurring over hours to days, influence long-term cell fates including differentiation. Here we report a whole-cell movement that occurs in sliding hydrogels at the minutes timescale, termed cell tumbling, characterized by three-dimensional cell dynamics and hydrogel deformation elicited by heightened seconds-to-minutes-scale cytoskeletal and nuclear activity. Studies inhibiting or promoting the cell tumbling of mesenchymal stem cells show that this behaviour enhances differentiation into chondrocytes. Further, it is associated with a decrease in global chromatin accessibility, which is required for enhanced differentiation. Cell tumbling also occurs during differentiation into other lineages and its differentiation-enhancing effects are validated in various hydrogel platforms. Our results establish that cell tumbling is an additional regulator of stem cell differentiation, mediated by rapid niche deformation and nuclear mechanotransduction.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.