Self-orthogonal cyclic codes with good parameters

IF 1.2 3区 数学 Q1 MATHEMATICS
Jiayuan Zhang, Xiaoshan Kai, Ping Li
{"title":"Self-orthogonal cyclic codes with good parameters","authors":"Jiayuan Zhang,&nbsp;Xiaoshan Kai,&nbsp;Ping Li","doi":"10.1016/j.ffa.2024.102534","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of self-orthogonal codes is an interesting topic due to their wide applications in communication and cryptography. In this paper, we construct several families of self-orthogonal cyclic codes with length <span><math><mi>n</mi><mo>=</mo><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow><mrow><mi>λ</mi></mrow></mfrac></math></span>, where <span><math><mi>λ</mi><mo>|</mo><mi>q</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span> is odd. It is proved that there exist <em>q</em>-ary self-orthogonal cyclic codes with parameters <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mo>≥</mo><mi>d</mi><mo>]</mo></math></span> for even prime power <em>q</em>, and <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mn>1</mn><mo>,</mo><mo>≥</mo><mi>d</mi><mo>]</mo></math></span> or <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mo>≥</mo><mi>d</mi><mo>]</mo></math></span> for odd prime power <em>q</em>, where <em>d</em> is significantly better than the square-root bound. These several families of self-orthogonal cyclic codes contain some optimal linear codes.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001734","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of self-orthogonal codes is an interesting topic due to their wide applications in communication and cryptography. In this paper, we construct several families of self-orthogonal cyclic codes with length n=qm1λ, where λ|q1 and m3 is odd. It is proved that there exist q-ary self-orthogonal cyclic codes with parameters [n,n12,d] for even prime power q, and [n,n21,d] or [n,n12,d] for odd prime power q, where d is significantly better than the square-root bound. These several families of self-orthogonal cyclic codes contain some optimal linear codes.
具有良好参数的自正交循环码
由于自正交码在通信和密码学中的广泛应用,构建自正交码是一个有趣的课题。本文构建了多个长度为 n=qm-1λ(其中 λ|q-1 且 m≥3 为奇数)的自正交循环码族。研究证明,对于偶素数 q,存在参数为 [n,n-12,≥d] 的 qary 自正交循环码;对于奇素数 q,存在参数为 [n,n2-1,≥d] 或 [n,n-12,≥d] 的 qary 自正交循环码,其中 d 明显优于平方根约束。这几个自正交循环码族包含一些最优线性码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信