CVAE-based inverse design of two-dimensional honeycomb pentamode metastructure for acoustic cloaking

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Gen Li, Lihua Tang, Vladislav Sorokin, Shaohua Wang
{"title":"CVAE-based inverse design of two-dimensional honeycomb pentamode metastructure for acoustic cloaking","authors":"Gen Li,&nbsp;Lihua Tang,&nbsp;Vladislav Sorokin,&nbsp;Shaohua Wang","doi":"10.1016/j.tws.2024.112623","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a method for inverse design of two-dimensional honeycomb pentamode metastructures (HPM) based on the Conditional Variational Auto-Encoder (CVAE) is proposed to achieve acoustic cloaking. The parameter distribution of the perfect acoustic cloak with two-dimensional cylindrical Kohn-Shen-Vogelius-Weinstein (KSVW) mapping is first derived. The CVAE model framework is then established along with its loss function in terms of the design parameters of the HPM. The inverse design performance of the deep generative model is evaluated using a large number of random test samples based on finite element simulations, showing that the equivalent mechanical parameters obtained from inverse design are highly consistent with the target parameters of the perfect acoustic cloak. For the HPM cloak design given by the trained deep generative model, the total scattering cross section (TSCS) is significantly reduced as compared to the case without a cloak, thereby demonstrating the effectiveness of the CVAE-based inverse design of acoustic cloak.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112623"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010632","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a method for inverse design of two-dimensional honeycomb pentamode metastructures (HPM) based on the Conditional Variational Auto-Encoder (CVAE) is proposed to achieve acoustic cloaking. The parameter distribution of the perfect acoustic cloak with two-dimensional cylindrical Kohn-Shen-Vogelius-Weinstein (KSVW) mapping is first derived. The CVAE model framework is then established along with its loss function in terms of the design parameters of the HPM. The inverse design performance of the deep generative model is evaluated using a large number of random test samples based on finite element simulations, showing that the equivalent mechanical parameters obtained from inverse design are highly consistent with the target parameters of the perfect acoustic cloak. For the HPM cloak design given by the trained deep generative model, the total scattering cross section (TSCS) is significantly reduced as compared to the case without a cloak, thereby demonstrating the effectiveness of the CVAE-based inverse design of acoustic cloak.
基于 CVAE 的用于声隐形的二维蜂巢五模元结构反设计
本文提出了一种基于条件变异自动编码器(CVAE)的二维蜂窝五模隐身结构(HPM)反向设计方法,以实现声隐身。首先推导了具有二维圆柱 Kohn-Shen-Vogelius-Weinstein (KSVW) 映射的完美声隐形的参数分布。然后,根据 HPM 的设计参数建立了 CVAE 模型框架及其损失函数。在有限元模拟的基础上,使用大量随机测试样本对深度生成模型的反设计性能进行了评估,结果表明反设计获得的等效机械参数与完美声学隐形衣的目标参数高度一致。对于训练有素的深度生成模型给出的 HPM 斗篷设计,与没有斗篷的情况相比,总散射截面(TSCS)显著减小,从而证明了基于 CVAE 的声学斗篷反设计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信