{"title":"Using hyperspectral imaging to predict the occurrence of delayed graft function","authors":"","doi":"10.1016/j.saa.2024.125350","DOIUrl":null,"url":null,"abstract":"<div><div>Delayed Graft Function (DGF) is a prevalent complication in kidney transplantation (KT) that significantly affects allograft function and patient prognosis. Early and precise identification of DGF is crucial for improving post-transplant outcomes. In this study, we present KGnet, a predictive model leveraging hyperspectral imaging (HSI) to assess delayed graft function status. We analyzed 72 zero-hour biopsy samples from transplanted kidneys with confirmed pathological diagnoses, capturing spectral data across a wavelength range of 400 to 1000 nm. By examining spectral signatures related to tissue oxygenation, perfusion, and metabolic states, our approach enabled the detection of subtle biochemical changes indicative of DGF risk. The preprocessed spectral data were input into KGnet, achieving a prediction accuracy of 94 % for DGF occurrence, significantly outperforming existing predictive models. This study identifies key spectral signatures associated with DGF, allowing for precise risk prediction even before clinical symptoms emerge. Leveraging HSI for early detection introduces a novel pathway for individualized post-transplant management, offering substantial potential to enhance kidney transplantation outcomes and patient quality of life. These findings highlight significant clinical and research implications for the broader application of HSI in transplant medicine.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524015166","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Delayed Graft Function (DGF) is a prevalent complication in kidney transplantation (KT) that significantly affects allograft function and patient prognosis. Early and precise identification of DGF is crucial for improving post-transplant outcomes. In this study, we present KGnet, a predictive model leveraging hyperspectral imaging (HSI) to assess delayed graft function status. We analyzed 72 zero-hour biopsy samples from transplanted kidneys with confirmed pathological diagnoses, capturing spectral data across a wavelength range of 400 to 1000 nm. By examining spectral signatures related to tissue oxygenation, perfusion, and metabolic states, our approach enabled the detection of subtle biochemical changes indicative of DGF risk. The preprocessed spectral data were input into KGnet, achieving a prediction accuracy of 94 % for DGF occurrence, significantly outperforming existing predictive models. This study identifies key spectral signatures associated with DGF, allowing for precise risk prediction even before clinical symptoms emerge. Leveraging HSI for early detection introduces a novel pathway for individualized post-transplant management, offering substantial potential to enhance kidney transplantation outcomes and patient quality of life. These findings highlight significant clinical and research implications for the broader application of HSI in transplant medicine.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.