Fábio Rodrigo de Oliveira , Tiele Medianeira Rizzetti , Renato Zanella , Julia Antunes de Oliveira , Camila Rafaela Rathke , Valéria Louzada Leal Butzke , Ênio Leandro Machado , Carlos Alexandre Lutterbeck , Rosana de Cassia de Souza Schneider
{"title":"Scenedesmus subspicatus potential for pharmacological compounds removal from aqueous media","authors":"Fábio Rodrigo de Oliveira , Tiele Medianeira Rizzetti , Renato Zanella , Julia Antunes de Oliveira , Camila Rafaela Rathke , Valéria Louzada Leal Butzke , Ênio Leandro Machado , Carlos Alexandre Lutterbeck , Rosana de Cassia de Souza Schneider","doi":"10.1016/j.algal.2024.103771","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging pollutants such as active pharmaceutical compounds (APCs) excreted by humans and animals are of growing concern due to their environmental impacts. This study aimed at to assess the phycoremediation potential of the microalgae <em>Scenedesmus subspicatus</em> for the removal of APCs, from water under controlled light and temperature conditions. The effects of hydrolysis and photolysis on the compounds were also monitored. Known concentrations of acetaminophen, acetylsalicylic acid, salicylic acid, albendazole, atenolol, propranolol, caffeine, carbamazepine, ibuprofen, ciprofloxacin, norfloxacin, ofloxacin, sulfamethoxazole, and trimethoprim were added in the microalgae medium. Samples were collected at 7-day intervals over twenty-one days and analyzed by UHPLC-MS/MS. Salicylic acid, albendazole, acetaminophen, atenolol, propranolol, and sulfamethoxazole were degraded by photolysis, hydrolysis, and phycoremediation, with the latter proving be more efficient. Propranolol and sulfamethoxazole presented low degradation by photolysis and hydrolysis. Some of the investigated compounds showed limited degradation and were not eliminated by any methods. Caffeine, carbamazepine, and trimethoprim were unaffected by hydrolysis, photolysis, or phycoremediation. Microalgae growth during the experiment was limited, suggesting toxic effects of some APCs. The findings highlight the importance of phycoremediation as a promising alternative for removing emerging pollutants from water.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424003837","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging pollutants such as active pharmaceutical compounds (APCs) excreted by humans and animals are of growing concern due to their environmental impacts. This study aimed at to assess the phycoremediation potential of the microalgae Scenedesmus subspicatus for the removal of APCs, from water under controlled light and temperature conditions. The effects of hydrolysis and photolysis on the compounds were also monitored. Known concentrations of acetaminophen, acetylsalicylic acid, salicylic acid, albendazole, atenolol, propranolol, caffeine, carbamazepine, ibuprofen, ciprofloxacin, norfloxacin, ofloxacin, sulfamethoxazole, and trimethoprim were added in the microalgae medium. Samples were collected at 7-day intervals over twenty-one days and analyzed by UHPLC-MS/MS. Salicylic acid, albendazole, acetaminophen, atenolol, propranolol, and sulfamethoxazole were degraded by photolysis, hydrolysis, and phycoremediation, with the latter proving be more efficient. Propranolol and sulfamethoxazole presented low degradation by photolysis and hydrolysis. Some of the investigated compounds showed limited degradation and were not eliminated by any methods. Caffeine, carbamazepine, and trimethoprim were unaffected by hydrolysis, photolysis, or phycoremediation. Microalgae growth during the experiment was limited, suggesting toxic effects of some APCs. The findings highlight the importance of phycoremediation as a promising alternative for removing emerging pollutants from water.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment