{"title":"Oxygen-tolerant photo-RAFT enables in-situ synthesis of protein-based nanoparticles","authors":"Vinod Kumar Kannaujiya, Tong Zhang, Md Aquib, Cyrille Boyer","doi":"10.1016/j.eurpolymj.2024.113518","DOIUrl":null,"url":null,"abstract":"<div><div>Protein-polymer conjugates are an important class of hybrid biomaterials with significant potential for biomedical applications. This study presents an innovative method for synthesizing and self-assembling these conjugates into nanoparticles using an oxygen-tolerant photoinitiated reversible addition-fragmentation chain transfer polymerization-induced self-assembly (RAFT-PISA) technique. By employing eosin Y/triethanolamine (EY/TEOA) as a photocatalyst system, oxygen inhibition is successfully overcome. As a model, a disulfide-containing bovine serum albumin (BSA) macro-RAFT agent is synthesized and used to control the copolymerization of <em>N,N</em>-dimethyl acrylamide (DMA) and diacetone acrylamide (DAAm). The resulting amphiphilic BSA-P(DMA-<em>co</em>-DAAm) conjugates self-assemble into well-defined spherical micelles. The study meticulously explores how various factors–such as the degree of polymerization (DP), DMA content, solid content, and grafting density (number of polymer chains per protein) affect the size and morphology of the nanoparticles. Finally, the introduction of reduction-sensitive disulfide linkages between proteins and synthetic polymers imparts degradability under biologically relevant redox conditions, making these conjugates promising candidates for drug delivery applications. This study offers a versatile and efficient strategy for the synthesis and self-assembly of protein-polymer conjugates into nanoparticles with potential applications in biomedicine.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113518"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724007791","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-polymer conjugates are an important class of hybrid biomaterials with significant potential for biomedical applications. This study presents an innovative method for synthesizing and self-assembling these conjugates into nanoparticles using an oxygen-tolerant photoinitiated reversible addition-fragmentation chain transfer polymerization-induced self-assembly (RAFT-PISA) technique. By employing eosin Y/triethanolamine (EY/TEOA) as a photocatalyst system, oxygen inhibition is successfully overcome. As a model, a disulfide-containing bovine serum albumin (BSA) macro-RAFT agent is synthesized and used to control the copolymerization of N,N-dimethyl acrylamide (DMA) and diacetone acrylamide (DAAm). The resulting amphiphilic BSA-P(DMA-co-DAAm) conjugates self-assemble into well-defined spherical micelles. The study meticulously explores how various factors–such as the degree of polymerization (DP), DMA content, solid content, and grafting density (number of polymer chains per protein) affect the size and morphology of the nanoparticles. Finally, the introduction of reduction-sensitive disulfide linkages between proteins and synthetic polymers imparts degradability under biologically relevant redox conditions, making these conjugates promising candidates for drug delivery applications. This study offers a versatile and efficient strategy for the synthesis and self-assembly of protein-polymer conjugates into nanoparticles with potential applications in biomedicine.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.