Population dynamics in a Leslie-Gower predator-prey model with proportional prey refuge at low densities

IF 1.2 3区 数学 Q1 MATHEMATICS
Christian Cortés-García
{"title":"Population dynamics in a Leslie-Gower predator-prey model with proportional prey refuge at low densities","authors":"Christian Cortés-García","doi":"10.1016/j.jmaa.2024.128993","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we propose a mathematical Leslie-Gower predator-prey model, in which the prey takes refuge from the predator when its population size is below a critical threshold, the functional response of the predator is represented by a Holling II function, and the growth of the prey in the absence of the predator is subject to a semi-saturation parameter that affects its birth curve. Since the model is composed of two vector fields, its qualitative analysis includes, in addition to the determination of the number and stability of the equilibria for each vector field and belonging to the biological sense set, the study of the dynamics in the trajectories close to the dividing curve of the two vector fields in order to determine possible pseudo-equilibria. As a result, if the proposed model has a single inner equilibrium, then there is the possibility of having between one or at least two limit cycles, coexisting or not in both vector fields and around the inner equilibrium. Likewise, the model has a stable pseudo-equilibrium which may be surrounded by at least two limit cycle.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128993"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009156","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a mathematical Leslie-Gower predator-prey model, in which the prey takes refuge from the predator when its population size is below a critical threshold, the functional response of the predator is represented by a Holling II function, and the growth of the prey in the absence of the predator is subject to a semi-saturation parameter that affects its birth curve. Since the model is composed of two vector fields, its qualitative analysis includes, in addition to the determination of the number and stability of the equilibria for each vector field and belonging to the biological sense set, the study of the dynamics in the trajectories close to the dividing curve of the two vector fields in order to determine possible pseudo-equilibria. As a result, if the proposed model has a single inner equilibrium, then there is the possibility of having between one or at least two limit cycles, coexisting or not in both vector fields and around the inner equilibrium. Likewise, the model has a stable pseudo-equilibrium which may be surrounded by at least two limit cycle.
莱斯利-高尔捕食者-猎物模型中的种群动态,低密度时猎物按比例避难
在本文中,我们提出了一个莱斯利-高尔捕食者-猎物数学模型,在该模型中,当猎物的种群数量低于临界阈值时,猎物会躲避捕食者,捕食者的功能响应由霍林 II 函数表示,而猎物在没有捕食者的情况下的生长受一个影响其出生曲线的半饱和参数的制约。由于该模型由两个矢量场组成,其定性分析除了确定每个矢量场的平衡点数量和稳定性以及属于生物意义集之外,还包括研究两个矢量场分界曲线附近轨迹的动态,以确定可能的伪平衡点。因此,如果所提出的模型有一个单一的内部平衡,那么在两个矢量场和内部平衡周围就有可能存在一个或至少两个极限循环。同样,该模型也有一个稳定的伪平衡,其周围可能存在至少两个极限循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信