{"title":"Gradient estimates for unbounded Laplacians with ellipticity condition on graphs","authors":"Yong Lin , Shuang Liu","doi":"10.1016/j.jmaa.2024.128996","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we prove various gradient estimates for unbounded graph Laplacians which satisfy the ellipticity condition. Unlike common assumptions for unbounded Laplacians, i.e. completeness and non-degenerate measure, the ellipticity condition is purely local that is easy to verify on a graph. First, we establish an equivalent semigroup property, namely the gradient estimate of exponential curvature-dimension inequality, which is a modification of the curvature-dimension inequality and can be viewed as a notion of curvature on graphs. Additionally, we use the semigroup method to prove the Li-Yau inequalities and the Hamilton inequality for unbounded Laplacians on graphs with the ellipticity condition.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128996"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009181","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we prove various gradient estimates for unbounded graph Laplacians which satisfy the ellipticity condition. Unlike common assumptions for unbounded Laplacians, i.e. completeness and non-degenerate measure, the ellipticity condition is purely local that is easy to verify on a graph. First, we establish an equivalent semigroup property, namely the gradient estimate of exponential curvature-dimension inequality, which is a modification of the curvature-dimension inequality and can be viewed as a notion of curvature on graphs. Additionally, we use the semigroup method to prove the Li-Yau inequalities and the Hamilton inequality for unbounded Laplacians on graphs with the ellipticity condition.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.