Expansiveness, generators and Lyapunov exponents for random bundle transformations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Liu, Xiaojun Huang
{"title":"Expansiveness, generators and Lyapunov exponents for random bundle transformations","authors":"Yu Liu,&nbsp;Xiaojun Huang","doi":"10.1016/j.jmaa.2024.128989","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize Fathi's results by showing that a compact metrizable space admits an fiber expansive homeomorphism if and only if it has a compatible hyperbolic metric. Moreover, we prove that a compact metrizable space admits an fiber expansive homeomorphism if and only if it has a generator in detail. Furthermore, we show that a fiber expansive homeomorphism has finite fiber topological entropy. Finally, we show that fiber Lyapunov exponents for a fiber expansive system are different from zero, indicating that the system presents a chaotic system. Meanwhile, we also prove that negative fiber Lyapunov exponents for compact invariant sets of a dynamical system imply that the compact set is a fiber attractor.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize Fathi's results by showing that a compact metrizable space admits an fiber expansive homeomorphism if and only if it has a compatible hyperbolic metric. Moreover, we prove that a compact metrizable space admits an fiber expansive homeomorphism if and only if it has a generator in detail. Furthermore, we show that a fiber expansive homeomorphism has finite fiber topological entropy. Finally, we show that fiber Lyapunov exponents for a fiber expansive system are different from zero, indicating that the system presents a chaotic system. Meanwhile, we also prove that negative fiber Lyapunov exponents for compact invariant sets of a dynamical system imply that the compact set is a fiber attractor.
随机束变换的广延性、生成器和李亚普诺夫指数
我们概括了法蒂的结果,证明了紧凑可元空间只有在具有兼容双曲公设的情况下才会有纤维展开同构。此外,我们还详细证明了当且仅当一个紧凑可元空间有一个生成器时,它才会有一个纤维扩展同构。此外,我们还证明了纤维膨胀同构具有有限的纤维拓扑熵。最后,我们证明了纤维膨胀系统的纤维 Lyapunov 指数不同于零,表明该系统呈现混沌系统。同时,我们还证明了动力系统紧凑不变集的负纤维 Lyapunov 指数意味着紧凑集是纤维吸引子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信