Sorin-Cristian Vladescu , Ralph Lumby , Andrew Gant , Helen Dyer , Tom Reddyhoff
{"title":"Using lubricant composition to control friction-induced-vibration in an elastomer-steel contact representing a hydraulic seal","authors":"Sorin-Cristian Vladescu , Ralph Lumby , Andrew Gant , Helen Dyer , Tom Reddyhoff","doi":"10.1016/j.triboint.2024.110346","DOIUrl":null,"url":null,"abstract":"<div><div>Hydraulic seals are key industrial components that can suffer from unwanted friction induced vibration (FIV). The types of FIV mechanism that occur in these components, and how they may be controlled, are not well known. We conducted sliding friction tests on contacts between seal materials, lubricated by hydraulic fluids, under speeds and contact pressures typical of hydraulic machines. FIV that occurred under certain conditions was captured and analysed. Results suggest 1) two FIV mechanisms are occurring: classic stick-slip and speed dependant friction instability, the 2) occurrence and severity of these mechanisms are correlated with the ratio of static to dynamic friction and the gradient of the friction vs. speed (Stribeck) curve, respectively, 3) these parameters can be controlled by including an appropriate additive package in the lubricant and this significantly reduces FIV, 4) most FIV occurs at low temperature and high load since these both lead to low kinetic friction (due to thicker hydrodynamic films and smoother surfaces) and thus promote stick-slip. This may explain instances of noise known in practice as the “Monday-morning effect” and suggests how this too may be alleviated through lubricant formulation.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110346"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24010983","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydraulic seals are key industrial components that can suffer from unwanted friction induced vibration (FIV). The types of FIV mechanism that occur in these components, and how they may be controlled, are not well known. We conducted sliding friction tests on contacts between seal materials, lubricated by hydraulic fluids, under speeds and contact pressures typical of hydraulic machines. FIV that occurred under certain conditions was captured and analysed. Results suggest 1) two FIV mechanisms are occurring: classic stick-slip and speed dependant friction instability, the 2) occurrence and severity of these mechanisms are correlated with the ratio of static to dynamic friction and the gradient of the friction vs. speed (Stribeck) curve, respectively, 3) these parameters can be controlled by including an appropriate additive package in the lubricant and this significantly reduces FIV, 4) most FIV occurs at low temperature and high load since these both lead to low kinetic friction (due to thicker hydrodynamic films and smoother surfaces) and thus promote stick-slip. This may explain instances of noise known in practice as the “Monday-morning effect” and suggests how this too may be alleviated through lubricant formulation.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.