{"title":"Recent advances in green chemistry approaches for pharmaceutical synthesis","authors":"Sageer Ahmad , Rahul Jaiswal , Reetu Yadav , Sarita Verma","doi":"10.1016/j.scowo.2024.100029","DOIUrl":null,"url":null,"abstract":"<div><div>Green chemistry has revolutionized pharmaceutical synthesis by promoting sustainability and reducing environmental impact. This review aims to present the recent advancements in the green chemistry approaches that include the principles, novel methods and the application of the methodologies in brief. Beginning with the discussion of the general research background and significance, the review addresses principles of green chemistry such as atom economy, the reduction of waste generation, and the applications of sustainable feedstocks. Closeness to environment solvents choice and catalytic processes are highlighted as well as the priority of uses of bio-catalysis and chemo-enzymatic strategies to reactions improvement and sustainability. Case studies including in this review demonstrate the practical application of green chemistry principles in real-world pharmaceutical manufacturing, showcasing successful implementation and the environmental benefits achieved. It also discusses present day methods like microwave and ultrasound assisted synthesis, flow chemistry, and eco-friendly extraction techniques, making reaction better and using less energy. Examples of good practice for industrial application are described and the possible drawbacks, such as economical, technical, and legal problems, are also discussed. Other aspects of green chemistry, including the scalability of the concepts along with focuses of catalysis, solvents, and reuses of wastes are described herein. Therefore, this review discussed the positive changes brought by green chemistry to the pharmaceutical industry and also pointed out new directions and potential difficulties on this road.</div></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"4 ","pages":"Article 100029"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357424000295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Green chemistry has revolutionized pharmaceutical synthesis by promoting sustainability and reducing environmental impact. This review aims to present the recent advancements in the green chemistry approaches that include the principles, novel methods and the application of the methodologies in brief. Beginning with the discussion of the general research background and significance, the review addresses principles of green chemistry such as atom economy, the reduction of waste generation, and the applications of sustainable feedstocks. Closeness to environment solvents choice and catalytic processes are highlighted as well as the priority of uses of bio-catalysis and chemo-enzymatic strategies to reactions improvement and sustainability. Case studies including in this review demonstrate the practical application of green chemistry principles in real-world pharmaceutical manufacturing, showcasing successful implementation and the environmental benefits achieved. It also discusses present day methods like microwave and ultrasound assisted synthesis, flow chemistry, and eco-friendly extraction techniques, making reaction better and using less energy. Examples of good practice for industrial application are described and the possible drawbacks, such as economical, technical, and legal problems, are also discussed. Other aspects of green chemistry, including the scalability of the concepts along with focuses of catalysis, solvents, and reuses of wastes are described herein. Therefore, this review discussed the positive changes brought by green chemistry to the pharmaceutical industry and also pointed out new directions and potential difficulties on this road.