Disconnected forbidden pairs force supereulerian graphs to be hamiltonian

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"Disconnected forbidden pairs force supereulerian graphs to be hamiltonian","authors":"","doi":"10.1016/j.disc.2024.114301","DOIUrl":null,"url":null,"abstract":"<div><div>A graph is said to be supereulerian if it has a spanning eulerian subgraph, i.e., a spanning connected even subgraph. A graph is called hamiltonian if it contains a spanning cycle. A graph is said to be <span><math><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></math></span>-free if it does not contain <em>R</em> or <em>S</em> as an induced subgraph. Yang et al. characterized all pairs of connected graphs <span><math><mi>R</mi><mo>,</mo><mi>S</mi></math></span> such that every supereulerian <span><math><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></math></span>-free graph is hamiltonian. In this paper, we consider disconnected forbidden graph <span><math><mi>R</mi><mo>,</mo><mi>S</mi></math></span>. We characterize all pairs of disconnected graphs <span><math><mi>R</mi><mo>,</mo><mi>S</mi></math></span> such that every supereulerian <span><math><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></math></span>-free graph of sufficiently large order is hamiltonian. Applying this result, we also characterize all forbidden pairs for the existence of a Hamiltonian cycle in 2-edge connected graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004321","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A graph is said to be supereulerian if it has a spanning eulerian subgraph, i.e., a spanning connected even subgraph. A graph is called hamiltonian if it contains a spanning cycle. A graph is said to be {R,S}-free if it does not contain R or S as an induced subgraph. Yang et al. characterized all pairs of connected graphs R,S such that every supereulerian {R,S}-free graph is hamiltonian. In this paper, we consider disconnected forbidden graph R,S. We characterize all pairs of disconnected graphs R,S such that every supereulerian {R,S}-free graph of sufficiently large order is hamiltonian. Applying this result, we also characterize all forbidden pairs for the existence of a Hamiltonian cycle in 2-edge connected graphs.
断开的禁止对迫使超立体图成为哈密顿图
如果一个图有一个跨越的优勒子图,即一个跨越的连通偶数子图,则称该图为超优勒图。如果一个图包含一个跨循环,则称为哈密顿图。如果一个图不包含 R 或 S 作为诱导子图,则称其为无{R,S}图。Yang等人描述了所有连通图R,S的特征,即每个无超循环{R,S}图都是哈密顿图。在本文中,我们考虑断开的禁止图 R,S。我们描述了所有成对的断开图 R,S 的特征,即每个阶数足够大的无超线性 {R,S} 图都是哈密顿图。应用这一结果,我们还描述了在 2 边相连图中存在哈密顿循环的所有禁止图对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信