Completely regular codes with covering radius 1 and the second eigenvalue in 3-dimensional Hamming graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Ivan Mogilnykh, Anna Taranenko, Konstantin Vorob'ev
{"title":"Completely regular codes with covering radius 1 and the second eigenvalue in 3-dimensional Hamming graphs","authors":"Ivan Mogilnykh,&nbsp;Anna Taranenko,&nbsp;Konstantin Vorob'ev","doi":"10.1016/j.disc.2024.114296","DOIUrl":null,"url":null,"abstract":"<div><div>We obtain a classification of completely regular codes with covering radius 1 and the second eigenvalue in the Hamming graphs <span><math><mi>H</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> up to <em>q</em> and intersection array. Due to the works of Meyerowitz, Mogilnykh, and Valyuzenich, our result completes the classifications of completely regular codes with covering radius 1 and the second eigenvalue in the Hamming graphs <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> for any <em>n</em> and completely regular codes with covering radius 1 in <span><math><mi>H</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114296"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004278","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain a classification of completely regular codes with covering radius 1 and the second eigenvalue in the Hamming graphs H(3,q) up to q and intersection array. Due to the works of Meyerowitz, Mogilnykh, and Valyuzenich, our result completes the classifications of completely regular codes with covering radius 1 and the second eigenvalue in the Hamming graphs H(n,q) for any n and completely regular codes with covering radius 1 in H(3,q).
覆盖半径为 1 的完全正则码和三维汉明图中的第二特征值
我们获得了覆盖半径为 1 且在汉明图 H(3,q) 中具有第二特征值(直到 q 和交集阵列)的完全正则码的分类。由于 Meyerowitz、Mogilnykh 和 Valyuzenich 的工作,我们的结果完成了对任意 n 的汉明图 H(n,q) 中覆盖半径为 1 和第二特征值的完全正则码以及 H(3,q) 中覆盖半径为 1 的完全正则码的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信