{"title":"Advancement of thermochemical conversion and the potential of biomasses for production of clean energy: A review","authors":"Divya Bisen , Ashish Pratap Singh Chouhan , Manish Pant , Sankar Chakma","doi":"10.1016/j.rser.2024.115016","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the promising realm of clean energy production through thermochemical conversion and chemical advancements. As the global demand for sustainable energy intensifies, exploring innovative technologies becomes imperative. The focus here is on harnessing the potential of thermochemical conversion, coupled with advancements in chemical processes. This dual approach holds significant promises for generating clean energy. The abstract underscores the critical role of these technologies in meeting escalating energy needs while shedding light on the advancements, challenges, and opportunities that pave the way for their successful implementation. Waste biomass represents an excellent bioresource that can be harnessed to produce numerous types of energy carriers, including bio-oil, bio-crude oil, biodiesel, syngas, biochar, and hydrogen. This article reviews the potential of various types of biomasses, including food waste, agricultural and forestry biomass, energy crops & oilseed crops, municipal solid waste, and animal manure, and also discusses the different types of reactors. In this review, comprehensively discusses all thermochemical methods for bio-oil production, including pyrolysis, gasification, and liquefaction. Each method is examined in detail, highlighting their respective processes, advantages, and challenges. Additionally, various types of reactors used in these methods are analyzed, emphasizing their roles and efficiencies in optimizing bio-oil yield and quality. Therefore, this review article will help in understanding the potentiality of waste biomasses for the production of clean energy via thermochemical techniques.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"208 ","pages":"Article 115016"},"PeriodicalIF":16.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124007421","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into the promising realm of clean energy production through thermochemical conversion and chemical advancements. As the global demand for sustainable energy intensifies, exploring innovative technologies becomes imperative. The focus here is on harnessing the potential of thermochemical conversion, coupled with advancements in chemical processes. This dual approach holds significant promises for generating clean energy. The abstract underscores the critical role of these technologies in meeting escalating energy needs while shedding light on the advancements, challenges, and opportunities that pave the way for their successful implementation. Waste biomass represents an excellent bioresource that can be harnessed to produce numerous types of energy carriers, including bio-oil, bio-crude oil, biodiesel, syngas, biochar, and hydrogen. This article reviews the potential of various types of biomasses, including food waste, agricultural and forestry biomass, energy crops & oilseed crops, municipal solid waste, and animal manure, and also discusses the different types of reactors. In this review, comprehensively discusses all thermochemical methods for bio-oil production, including pyrolysis, gasification, and liquefaction. Each method is examined in detail, highlighting their respective processes, advantages, and challenges. Additionally, various types of reactors used in these methods are analyzed, emphasizing their roles and efficiencies in optimizing bio-oil yield and quality. Therefore, this review article will help in understanding the potentiality of waste biomasses for the production of clean energy via thermochemical techniques.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.