Deep learning based segmentation of binder and fibers in gas diffusion layers

Andreas Grießer , Rolf Westerteiger , Erik Glatt , Hans Hagen , Andreas Wiegmann
{"title":"Deep learning based segmentation of binder and fibers in gas diffusion layers","authors":"Andreas Grießer ,&nbsp;Rolf Westerteiger ,&nbsp;Erik Glatt ,&nbsp;Hans Hagen ,&nbsp;Andreas Wiegmann","doi":"10.1016/j.nxmate.2024.100411","DOIUrl":null,"url":null,"abstract":"<div><div>Gas diffusion layers (GDLs) are vital parts for the performance of proton-exchange membrane fuel cells (PEMFCs). In many cases, they are made of Carbon-Carbon Composite Paper (CCCP), which consists of carbon fibers and a carbonized binder material. The distribution of the fibers and binder in the GDL strongly influences the performance of a PEMFC. Synchrotron scans are a great way to obtain information about the microstructural composition of carbon paper GDLs (Figure 2), but there is one major obstacle. Binder and fibers tend to have the same attenuation and, consequently, the same gray values in the scans. To overcome this, we introduce a machine learning-based method that segments fibers and binder from the local morphology of a CCCP. The training data is generated using FiberGeo, a module in the GeoDict software for fibrous microstructure generation. FiberGeo creates fibers based on stochastic geometry and adds binder using morphological opening and closing operations. We applied the machine learning-based method to four Scans of samples of Toray Carbon Paper with varying amounts of binder in them. The result is the quantification of individual voxels as fiber or binder material that can be used, for example, in performance simulations of property simulations in PEMFCs <span><span>[1]</span></span>, <span><span>[2]</span></span>, <span><span>[3]</span></span>, <span><span>[4]</span></span>. Here, we focus on the differences in the spatial distribution of the binder both in the through-plane and in-plane directions.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"6 ","pages":"Article 100411"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824003083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gas diffusion layers (GDLs) are vital parts for the performance of proton-exchange membrane fuel cells (PEMFCs). In many cases, they are made of Carbon-Carbon Composite Paper (CCCP), which consists of carbon fibers and a carbonized binder material. The distribution of the fibers and binder in the GDL strongly influences the performance of a PEMFC. Synchrotron scans are a great way to obtain information about the microstructural composition of carbon paper GDLs (Figure 2), but there is one major obstacle. Binder and fibers tend to have the same attenuation and, consequently, the same gray values in the scans. To overcome this, we introduce a machine learning-based method that segments fibers and binder from the local morphology of a CCCP. The training data is generated using FiberGeo, a module in the GeoDict software for fibrous microstructure generation. FiberGeo creates fibers based on stochastic geometry and adds binder using morphological opening and closing operations. We applied the machine learning-based method to four Scans of samples of Toray Carbon Paper with varying amounts of binder in them. The result is the quantification of individual voxels as fiber or binder material that can be used, for example, in performance simulations of property simulations in PEMFCs [1], [2], [3], [4]. Here, we focus on the differences in the spatial distribution of the binder both in the through-plane and in-plane directions.
基于深度学习的气体扩散层中粘合剂和纤维的分割
气体扩散层(GDL)是质子交换膜燃料电池(PEMFC)性能的重要组成部分。在许多情况下,它们由碳碳复合纸(CCCP)制成,后者由碳纤维和碳化粘合剂材料组成。纤维和粘合剂在 GDL 中的分布对 PEMFC 的性能有很大影响。同步辐射扫描是获得碳纸 GDL 微结构组成信息的重要途径(图 2),但存在一个主要障碍。粘合剂和纤维往往具有相同的衰减,因此扫描中的灰度值也相同。为了克服这一问题,我们引入了一种基于机器学习的方法,该方法可根据 CCCP 的局部形态来分割纤维和粘合剂。训练数据通过 FiberGeo 生成,FiberGeo 是 GeoDict 软件中用于生成纤维微结构的一个模块。FiberGeo 根据随机几何形状创建纤维,并通过形态学开合操作添加粘结剂。我们将基于机器学习的方法应用于东丽碳纸样品的四次扫描,其中含有不同数量的粘合剂。其结果是将单个体素量化为纤维或粘合剂材料,例如,可用于 PEMFC 性能模拟和特性模拟 [1]、[2]、[3]、[4]。在此,我们将重点关注粘结剂在通面和面内两个方向上的空间分布差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信