Zeyu Guo , Enhui Chen , Xianghong Xie , Yanfang Guo , Minglong Zhang , Yinghan Zhu , Yiting Wang , Fude Fang , Li Yan , Xiaojun Liu
{"title":"Flll32, a curcumin analog, improves adipose tissue thermogenesis","authors":"Zeyu Guo , Enhui Chen , Xianghong Xie , Yanfang Guo , Minglong Zhang , Yinghan Zhu , Yiting Wang , Fude Fang , Li Yan , Xiaojun Liu","doi":"10.1016/j.bbrc.2024.150919","DOIUrl":null,"url":null,"abstract":"<div><div>Adipose tissue is a key regulator of systemic energy homeostasis and improving adipose tissue function provides a brand-new theoretical reference for the prevention and treatment of obesity. FLLL32, a curcumin analog, can hinder various carcinogenic processes, however, its role in adipose tissue has not been fully elucidated. In this study, we observed that FLLL32 treatment significantly improved cold intolerance and reduced white adipose tissue (WAT) adipocyte size in mice, but had no effect on body weight and adipose tissues weight. Furthermore, FLLL32 treatment upregulated the expression level of uncoupling protein 1 and downregulated the expression level of peroxisome proliferator-activated receptor gamma in adipose tissue. Additionally, FLLL32 promoted the mRNA level of transferrin receptor protein 1, a key iron transporter on the cell membrane, and the lipid peroxidation in inguinal WAT. Finally, FLLL32 significantly inhibited the differentiation and maturation of preadipocytes. In summary, our results demonstrated that FLLL32 plays a crucial role in regulating adipose tissue function.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24014554","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adipose tissue is a key regulator of systemic energy homeostasis and improving adipose tissue function provides a brand-new theoretical reference for the prevention and treatment of obesity. FLLL32, a curcumin analog, can hinder various carcinogenic processes, however, its role in adipose tissue has not been fully elucidated. In this study, we observed that FLLL32 treatment significantly improved cold intolerance and reduced white adipose tissue (WAT) adipocyte size in mice, but had no effect on body weight and adipose tissues weight. Furthermore, FLLL32 treatment upregulated the expression level of uncoupling protein 1 and downregulated the expression level of peroxisome proliferator-activated receptor gamma in adipose tissue. Additionally, FLLL32 promoted the mRNA level of transferrin receptor protein 1, a key iron transporter on the cell membrane, and the lipid peroxidation in inguinal WAT. Finally, FLLL32 significantly inhibited the differentiation and maturation of preadipocytes. In summary, our results demonstrated that FLLL32 plays a crucial role in regulating adipose tissue function.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics