N. Biswal , Praveen K. Yadav , R.N. Panda , S. Mishra , M. Bhuyan
{"title":"Elucidating shell/subshell closure and the critical impact of isospin-asymmetry on barium isotopes using relativistic mean-field approach","authors":"N. Biswal , Praveen K. Yadav , R.N. Panda , S. Mishra , M. Bhuyan","doi":"10.1016/j.nuclphysa.2024.122975","DOIUrl":null,"url":null,"abstract":"<div><div>The aspect of structural evolution and the correlation of the properties of the ground state with the effective symmetry energy and its coefficients is examined for neutron-rich <em>even-even</em> isotopes of barium nuclei (<em>Z</em> = 56). The nuclear bulk properties such as binding energy, root-mean-square charge radius, quadrupole deformation, two neutron separation energy, and two neutron shell gaps are calculated using the axially deformed relativistic mean field formalism for nonlinear NL3<sup>⁎</sup> and density-dependent sets of DD-ME2 force parameters. The calculated results are further compared with the available experimental data and other theoretical models. The results of the bulk nuclear properties indicate <em>N</em> = 82 as a neutron shell closure near the neutron-rich side of the isotopic chain of Ba nuclei. Alternatively, a systematic analysis of isospin-dependent observables, such as the nuclear symmetry energy and its volume and surface components, is estimated along the isotopic chain, which is crucial for studying shell/subshell closure away from the <em>β</em>-stability line. This work incorporates two types of relativistic mean-field densities as inputs. Firstly, the spherical density using the NL3* and DD-ME2 parameter sets. Secondly, for comparison, the monopole component of the multipole expanded deformed density using the DD-ME2 parameter. From the isospin-dependent properties, we observe that both the spherical and monopole components of the deformed density follow a similar trend along the isotopic chain. The isospin-dependent quantities are in accordance with the nuclear bulk properties while verifying the traditional shell closure at <em>N</em> = 82 for the neutron-rich Ba nuclei. In addition, we noticed a significant peak near <em>N</em> = 58, indicating greater stability than its neighbouring nuclei. Consequently, this study provides a novel region of interest for isospin-based experimental and theoretical studies. Furthermore, the present investigation is quite relevant for understanding the role of isospin-asymmetry in the variation of nuclear properties, which is pivotal for elucidating the synthesis of exotic nuclei along the nuclear chart.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1053 ","pages":"Article 122975"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037594742400157X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The aspect of structural evolution and the correlation of the properties of the ground state with the effective symmetry energy and its coefficients is examined for neutron-rich even-even isotopes of barium nuclei (Z = 56). The nuclear bulk properties such as binding energy, root-mean-square charge radius, quadrupole deformation, two neutron separation energy, and two neutron shell gaps are calculated using the axially deformed relativistic mean field formalism for nonlinear NL3⁎ and density-dependent sets of DD-ME2 force parameters. The calculated results are further compared with the available experimental data and other theoretical models. The results of the bulk nuclear properties indicate N = 82 as a neutron shell closure near the neutron-rich side of the isotopic chain of Ba nuclei. Alternatively, a systematic analysis of isospin-dependent observables, such as the nuclear symmetry energy and its volume and surface components, is estimated along the isotopic chain, which is crucial for studying shell/subshell closure away from the β-stability line. This work incorporates two types of relativistic mean-field densities as inputs. Firstly, the spherical density using the NL3* and DD-ME2 parameter sets. Secondly, for comparison, the monopole component of the multipole expanded deformed density using the DD-ME2 parameter. From the isospin-dependent properties, we observe that both the spherical and monopole components of the deformed density follow a similar trend along the isotopic chain. The isospin-dependent quantities are in accordance with the nuclear bulk properties while verifying the traditional shell closure at N = 82 for the neutron-rich Ba nuclei. In addition, we noticed a significant peak near N = 58, indicating greater stability than its neighbouring nuclei. Consequently, this study provides a novel region of interest for isospin-based experimental and theoretical studies. Furthermore, the present investigation is quite relevant for understanding the role of isospin-asymmetry in the variation of nuclear properties, which is pivotal for elucidating the synthesis of exotic nuclei along the nuclear chart.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.