{"title":"Technology roadmap toward the completion of whole-brain architecture with BRA-driven development","authors":"Hiroshi Yamakawa , Yoshimasa Tawatsuji , Yuta Ashihara , Ayako Fukawa , Naoya Arakawa , Koichi Takahashi , Yutaka Matsuo","doi":"10.1016/j.cogsys.2024.101300","DOIUrl":null,"url":null,"abstract":"<div><div>The development of brain-morphic software holds significant promise for creating artificial general intelligence that exhibits high affinity and interpretability for humans and also offers substantial benefits for medical applications. To facilitate this, creating Brain Reference Architecture (BRA) data, serving as a design specification for brain-morphic software is imperative. BRA-driven development, which utilizes Brain Information Flow (BIF) diagrams based on mesoscale brain anatomy and Hypothetical Component Diagrams (HCD) for corresponding computational functionalities, has been proposed to address this need. This methodology formalizes identifying possible functional structures by leveraging existing, albeit insufficient, neuroscientific knowledge. However, applying this methodology across the entire brain, thereby creating a Whole Brain Reference Architecture (WBRA), represents a significant research and development challenge due to its scale and complexity. Technology roadmaps have been introduced as a strategic tool to guide discussion, management, and distribution of resources within such expansive research and development activities. These roadmaps proposed a manual, anatomically based approach to incrementally construct BIF and HCD, thereby systematically expanding brain organ coverage toward achieving a complete WBRA. Large Language Model (LLM) technologies have introduced a paradigm shift, substantially automating the BRA-driven development process. This is largely due to the BRA data being structured around the brain’s anatomy and described in natural language, which aligns well with the capabilities of LLMs for supporting and automating the construction and verification processes. In this paper, we propose a novel technology roadmap to largely automate the creation of WBRA, leveraging neuroscientific insights. This roadmap includes 12 activities for automating BIF construction, notably extracting anatomical structures from scholarly articles. Furthermore, it details 11 activities aimed at enhancing the integration of Hypothetical Component Diagrams (HCD) into the WBRA, focusing on automating checks for functional consistency. This roadmap aims to establish a cost-effective and efficient design process for WBRA, ensuring the availability of brain-morphic software design specifications that are continually validated against the latest neuroscientific knowledge.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"88 ","pages":"Article 101300"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000949","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The development of brain-morphic software holds significant promise for creating artificial general intelligence that exhibits high affinity and interpretability for humans and also offers substantial benefits for medical applications. To facilitate this, creating Brain Reference Architecture (BRA) data, serving as a design specification for brain-morphic software is imperative. BRA-driven development, which utilizes Brain Information Flow (BIF) diagrams based on mesoscale brain anatomy and Hypothetical Component Diagrams (HCD) for corresponding computational functionalities, has been proposed to address this need. This methodology formalizes identifying possible functional structures by leveraging existing, albeit insufficient, neuroscientific knowledge. However, applying this methodology across the entire brain, thereby creating a Whole Brain Reference Architecture (WBRA), represents a significant research and development challenge due to its scale and complexity. Technology roadmaps have been introduced as a strategic tool to guide discussion, management, and distribution of resources within such expansive research and development activities. These roadmaps proposed a manual, anatomically based approach to incrementally construct BIF and HCD, thereby systematically expanding brain organ coverage toward achieving a complete WBRA. Large Language Model (LLM) technologies have introduced a paradigm shift, substantially automating the BRA-driven development process. This is largely due to the BRA data being structured around the brain’s anatomy and described in natural language, which aligns well with the capabilities of LLMs for supporting and automating the construction and verification processes. In this paper, we propose a novel technology roadmap to largely automate the creation of WBRA, leveraging neuroscientific insights. This roadmap includes 12 activities for automating BIF construction, notably extracting anatomical structures from scholarly articles. Furthermore, it details 11 activities aimed at enhancing the integration of Hypothetical Component Diagrams (HCD) into the WBRA, focusing on automating checks for functional consistency. This roadmap aims to establish a cost-effective and efficient design process for WBRA, ensuring the availability of brain-morphic software design specifications that are continually validated against the latest neuroscientific knowledge.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.