A backward problem for stochastic Kuramoto-Sivashinsky equation: Conditional stability and numerical solution

IF 1.2 3区 数学 Q1 MATHEMATICS
Zewen Wang , Weili Zhu , Bin Wu , Bin Hu
{"title":"A backward problem for stochastic Kuramoto-Sivashinsky equation: Conditional stability and numerical solution","authors":"Zewen Wang ,&nbsp;Weili Zhu ,&nbsp;Bin Wu ,&nbsp;Bin Hu","doi":"10.1016/j.jmaa.2024.128988","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a backward problem in time for a linear stochastic Kuramoto-Sivashinsky equation. Firstly, we present two Carleman estimates incorporating weight functions independent of the variable <em>x</em> for the stochastic Kuramoto-Sivashinsky equation. Subsequently, we employ these two Carleman estimates to establish conditional stability for the backward problem in two distinct scenarios: when <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mi>T</mi></math></span> and when <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Lastly, we transform the backward problem in time into the minimization of a regularized Tikhonov functional. This functional is solved by the conjugate gradient algorithm based on the gradient formula tailored for the regularized functional. Numerical examples related to the recovery of continuous and discontinuous initial values illustrate the effectiveness of the conjugate gradient algorithm.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128988"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a backward problem in time for a linear stochastic Kuramoto-Sivashinsky equation. Firstly, we present two Carleman estimates incorporating weight functions independent of the variable x for the stochastic Kuramoto-Sivashinsky equation. Subsequently, we employ these two Carleman estimates to establish conditional stability for the backward problem in two distinct scenarios: when 0<t0<T and when t0=0. Lastly, we transform the backward problem in time into the minimization of a regularized Tikhonov functional. This functional is solved by the conjugate gradient algorithm based on the gradient formula tailored for the regularized functional. Numerical examples related to the recovery of continuous and discontinuous initial values illustrate the effectiveness of the conjugate gradient algorithm.
随机 Kuramoto-Sivashinsky 方程的后向问题:条件稳定性和数值解
在本文中,我们考虑了线性随机 Kuramoto-Sivashinsky 方程的时间反演问题。首先,我们为随机 Kuramoto-Sivashinsky 方程提出了两个 Carleman 估计值,其中包含与变量 x 无关的权重函数。随后,我们利用这两个卡勒曼估计值建立了后向问题在两种不同情况下的条件稳定性:0<t0<T 时和 t0=0 时。该函数通过共轭梯度算法求解,该算法基于为正则化函数量身定制的梯度公式。与恢复连续和不连续初始值有关的数值示例说明了共轭梯度算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信