Zhefan Li, Junkai Cai*, Lingxiao Wang and Chunying Duan*,
{"title":"Merging Consecutive PET Processes within a Metal–Organic Cage for Abiotic–Biotic Combined Photocatalytic Biomass Reforming","authors":"Zhefan Li, Junkai Cai*, Lingxiao Wang and Chunying Duan*, ","doi":"10.1021/acscatal.4c0601810.1021/acscatal.4c06018","DOIUrl":null,"url":null,"abstract":"<p >Combining abiotic photocatalytic modules with enzymatic conversion to reform biomass represents a compelling way for sustainable energy schemes but faces marked challenges on the electron and proton transport corresponding to the cofactor regeneration and shuttling between biotic and abiotic partners. Herein, we report a consecutive photoinduced electron-transfer approach to reform biomass into fuels and active H-source for nitroarene reduction by grafting a cage-dye-NADH (nicotinamide adenine dinucleotide) clathrate with glucose dehydrogenase (GDH). Under light irradiation, the cage-dye-NADH clathrate acts as a photoactive relay to conduct two photoinduced 1e<sup>–</sup> electron-transfer reactions consecutively with a 2e<sup>–</sup> oxidation of NADH to NAD<sup>+</sup>, guaranteeing an orderly path related to cofactor regeneration. When the clathrate is positioned inside the pocket of GDH to join a biotic NAD<sup>+</sup>-mediated synthesis, the metal–organic artificial enzyme facilitates fast cofactor generation and shuttling between the artificial clathrate and the native enzyme within one working module. The grafting enzyme combines artificial photocatalysis and enzymatic dehydrogenation to endow an efficient conversion of biomass feedstocks into green H-source, innovating a unique paradigm for the sustainable energy scheme that combines energy of two photons in one turnover cycle. The superiority of the grafting enzyme allows the direct hydrogenation and reduction of fine chemicals and enables tandem nitroarene reduction with a turnover number reaching 15,000, providing a distinguished avenue for biomass utilization and solar energy conversion.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16374–16382 16374–16382"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c06018","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Combining abiotic photocatalytic modules with enzymatic conversion to reform biomass represents a compelling way for sustainable energy schemes but faces marked challenges on the electron and proton transport corresponding to the cofactor regeneration and shuttling between biotic and abiotic partners. Herein, we report a consecutive photoinduced electron-transfer approach to reform biomass into fuels and active H-source for nitroarene reduction by grafting a cage-dye-NADH (nicotinamide adenine dinucleotide) clathrate with glucose dehydrogenase (GDH). Under light irradiation, the cage-dye-NADH clathrate acts as a photoactive relay to conduct two photoinduced 1e– electron-transfer reactions consecutively with a 2e– oxidation of NADH to NAD+, guaranteeing an orderly path related to cofactor regeneration. When the clathrate is positioned inside the pocket of GDH to join a biotic NAD+-mediated synthesis, the metal–organic artificial enzyme facilitates fast cofactor generation and shuttling between the artificial clathrate and the native enzyme within one working module. The grafting enzyme combines artificial photocatalysis and enzymatic dehydrogenation to endow an efficient conversion of biomass feedstocks into green H-source, innovating a unique paradigm for the sustainable energy scheme that combines energy of two photons in one turnover cycle. The superiority of the grafting enzyme allows the direct hydrogenation and reduction of fine chemicals and enables tandem nitroarene reduction with a turnover number reaching 15,000, providing a distinguished avenue for biomass utilization and solar energy conversion.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.