Bin Chen, Dehuan Shi, Renxia Deng, Xin Xu, Wenxia Liu, Yang Wei, Zheyuan Liu, Shenghong Zhong*, Jianfeng Huang* and Yan Yu*,
{"title":"Leveraging Atomic-Scale Synergy for Selective CO2 Electrocatalysis to CO over CuNi Dual-Atom Catalysts","authors":"Bin Chen, Dehuan Shi, Renxia Deng, Xin Xu, Wenxia Liu, Yang Wei, Zheyuan Liu, Shenghong Zhong*, Jianfeng Huang* and Yan Yu*, ","doi":"10.1021/acscatal.4c0516910.1021/acscatal.4c05169","DOIUrl":null,"url":null,"abstract":"<p >Revealing the synergistic catalytic mechanism involving multiple active centers is crucial for understanding multiphase catalysis. However, the complex structures of catalysts and interfacial environments pose a challenge in thoroughly exploring the experimental evidence. This study reports the utilization of a CuNi dual-atom catalyst (Cu/Ni–NC) for the electrochemical reduction of CO<sub>2</sub>. It demonstrates a high Faradaic efficiency of CO exceeding 99%, remarkable reaction activity with a partial current density surpassing –300 mA cm<sup>–2</sup>, and prolonged stability for more than 5 days at a current density of –200 mA·cm<sup>–2</sup>. <i>Operando</i> characterization techniques and density functional theory calculations reveal that Ni atoms function as active sites for the activation and hydrogenation of CO<sub>2</sub>, while Cu atoms serve as active sites for the dissociation of H<sub>2</sub>O, supplying protons for the subsequent hydrogenation process. Moreover, the electronic interactions between Ni and Cu atoms facilitate the formation of *COOH and the dissociation of H<sub>2</sub>O, illustrating a synergistic reduction of CO<sub>2</sub> at the dual-atom sites.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16224–16233 16224–16233"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c05169","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Revealing the synergistic catalytic mechanism involving multiple active centers is crucial for understanding multiphase catalysis. However, the complex structures of catalysts and interfacial environments pose a challenge in thoroughly exploring the experimental evidence. This study reports the utilization of a CuNi dual-atom catalyst (Cu/Ni–NC) for the electrochemical reduction of CO2. It demonstrates a high Faradaic efficiency of CO exceeding 99%, remarkable reaction activity with a partial current density surpassing –300 mA cm–2, and prolonged stability for more than 5 days at a current density of –200 mA·cm–2. Operando characterization techniques and density functional theory calculations reveal that Ni atoms function as active sites for the activation and hydrogenation of CO2, while Cu atoms serve as active sites for the dissociation of H2O, supplying protons for the subsequent hydrogenation process. Moreover, the electronic interactions between Ni and Cu atoms facilitate the formation of *COOH and the dissociation of H2O, illustrating a synergistic reduction of CO2 at the dual-atom sites.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.