Kaili Zhang*, Jianchun Jiang*, Zhe Liu, Jun Ye, Ran Tao, Hao Xu, Jingcong Xie, Jing Yang, Jian Zhao, Ning Zhang and Kui Wang*,
{"title":"Catalytic Hydrogenolysis of Lignin into Propenyl-monophenol over Ru Single Atoms Supported on CeO2 with Rich Oxygen Vacancies","authors":"Kaili Zhang*, Jianchun Jiang*, Zhe Liu, Jun Ye, Ran Tao, Hao Xu, Jingcong Xie, Jing Yang, Jian Zhao, Ning Zhang and Kui Wang*, ","doi":"10.1021/acscatal.4c0318410.1021/acscatal.4c03184","DOIUrl":null,"url":null,"abstract":"<p >Lignin is the most abundant aromatic source of natural products, but developing efficient catalysts to depolymerize it into valuable monophenol with high yield and unique selectivity remains a challenge. Herein, we report a Ru single-atom catalyst (SAC) supported on rod CeO<sub>2</sub> with oxygen vacancies (Ov) for the depolymerization of birch dioxane acidolysis lignin (DAL). A near-theoretical maximum monophenol yield (14.8 wt %) with good selectivity to 4-<i>n</i>-propenyl guaiacol (51.4%), as well as high catalyst stability, was achieved. The calculated turnover (TON) was 387 mol<sub>aromatics</sub>/mol<sub>Ru</sub>, which is 55× higher than that of the Ru/C catalyst. The possible reaction for this catalyst was proposed by studying a series of lignin model compounds and in situ DRIFT measurements. The mechanism involves the cleavage of C<sub>α</sub>–OH and C<sub>β</sub>–O bonds to produce coniferyl alcohol, followed by the removal of γ-OH to generate 4-<i>n</i>-propenyl guaiacol. The effects of some key parameters like solvent, Ru content, temperature, reaction time, and H<sub>2</sub> pressure were also investigated in terms of monophenol yields and average molecular weight. This work provides an economically feasible method for the depolymerization of lignin into highly valuable monophenols.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16115–16126 16115–16126"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c03184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin is the most abundant aromatic source of natural products, but developing efficient catalysts to depolymerize it into valuable monophenol with high yield and unique selectivity remains a challenge. Herein, we report a Ru single-atom catalyst (SAC) supported on rod CeO2 with oxygen vacancies (Ov) for the depolymerization of birch dioxane acidolysis lignin (DAL). A near-theoretical maximum monophenol yield (14.8 wt %) with good selectivity to 4-n-propenyl guaiacol (51.4%), as well as high catalyst stability, was achieved. The calculated turnover (TON) was 387 molaromatics/molRu, which is 55× higher than that of the Ru/C catalyst. The possible reaction for this catalyst was proposed by studying a series of lignin model compounds and in situ DRIFT measurements. The mechanism involves the cleavage of Cα–OH and Cβ–O bonds to produce coniferyl alcohol, followed by the removal of γ-OH to generate 4-n-propenyl guaiacol. The effects of some key parameters like solvent, Ru content, temperature, reaction time, and H2 pressure were also investigated in terms of monophenol yields and average molecular weight. This work provides an economically feasible method for the depolymerization of lignin into highly valuable monophenols.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.