An Equine Protein Atlas Highlights Synovial Fluid Proteome Dynamics during Experimentally LPS-Induced Arthritis

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Louise Bundgaard*, Filip Årman, Emma Åhrman, Marie Walters, Ulrich auf dem Keller, Johan Malmström and Stine Jacobsen, 
{"title":"An Equine Protein Atlas Highlights Synovial Fluid Proteome Dynamics during Experimentally LPS-Induced Arthritis","authors":"Louise Bundgaard*,&nbsp;Filip Årman,&nbsp;Emma Åhrman,&nbsp;Marie Walters,&nbsp;Ulrich auf dem Keller,&nbsp;Johan Malmström and Stine Jacobsen,&nbsp;","doi":"10.1021/acs.jproteome.4c0012510.1021/acs.jproteome.4c00125","DOIUrl":null,"url":null,"abstract":"<p >In human proteomics, substantial efforts are ongoing to leverage large collections of mass spectrometry (MS) fragment ion spectra into extensive spectral libraries (SL) as a resource for data independent acquisition (DIA) analysis. Currently, such initiatives in equine research are still missing. Here we present a large-scale equine SL, comprising 6394 canonical proteins and 89,329 unique peptides, based on data dependent acquisition analysis of 75 tissue and body fluid samples from horses. The SL enabled large-scale DIA-MS based quantification of the same samples to generate a quantitative equine protein distribution atlas to infer dominant proteins in different organs and body fluids. Data mining revealed 163 proteins uniquely identified in a specific type of tissue or body fluid, serving as a starting point to determine tissue-specific or tissue-type-specific proteins. We showcase the SL by highlighting proteome dynamics in equine synovial fluid samples during experimental lipopolysaccharide-induced arthritis. A fuzzy c-means cluster analysis pinpointed SERPINB1, ATRN, NGAL, LTF, MMP1, and LBP as putative biomarkers for joint inflammation. This SL provides an extendable resource for future equine studies employing DIA-MS.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.4c00125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00125","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In human proteomics, substantial efforts are ongoing to leverage large collections of mass spectrometry (MS) fragment ion spectra into extensive spectral libraries (SL) as a resource for data independent acquisition (DIA) analysis. Currently, such initiatives in equine research are still missing. Here we present a large-scale equine SL, comprising 6394 canonical proteins and 89,329 unique peptides, based on data dependent acquisition analysis of 75 tissue and body fluid samples from horses. The SL enabled large-scale DIA-MS based quantification of the same samples to generate a quantitative equine protein distribution atlas to infer dominant proteins in different organs and body fluids. Data mining revealed 163 proteins uniquely identified in a specific type of tissue or body fluid, serving as a starting point to determine tissue-specific or tissue-type-specific proteins. We showcase the SL by highlighting proteome dynamics in equine synovial fluid samples during experimental lipopolysaccharide-induced arthritis. A fuzzy c-means cluster analysis pinpointed SERPINB1, ATRN, NGAL, LTF, MMP1, and LBP as putative biomarkers for joint inflammation. This SL provides an extendable resource for future equine studies employing DIA-MS.

马蛋白质图谱突显实验性 LPS 诱导关节炎期间滑膜液蛋白质组的动态变化
在人类蛋白质组学研究中,人们一直在努力将大量的质谱碎片离子谱收集起来,形成庞大的光谱库(SL),作为数据独立采集(DIA)分析的资源。目前,在马的研究中仍缺少此类举措。在此,我们基于对 75 份马匹组织和体液样本的数据独立采集分析,展示了一个大规模的马匹光谱库,其中包括 6394 个典型蛋白质和 89,329 个独特的肽段。通过SL,可以对相同样本进行基于DIA-MS的大规模定量分析,生成定量马蛋白质分布图谱,从而推断不同器官和体液中的优势蛋白质。数据挖掘揭示了在特定类型的组织或体液中唯一鉴定出的 163 种蛋白质,作为确定组织特异性或组织类型特异性蛋白质的起点。我们通过强调实验性脂多糖诱发关节炎期间马滑膜液样本中蛋白质组的动态变化来展示 SL。模糊 c-means 聚类分析将 SERPINB1、ATRN、NGAL、LTF、MMP1 和 LBP 确定为关节炎症的假定生物标记物。该研究为今后采用 DIA-MS 进行马研究提供了可扩展的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信