Xinying Luo, Junjie Xiong, Xiaolong Liu, Zhichang Xiao*, Qinghua Zhang, Yuchen Cai, Bowen Liu, Yang Gao, Tao Liang, Qiang Zheng, Jichen Dong*, Ting Tan*, Zhenxing Wang, Yunqi Liu and Bin Wang*,
{"title":"A van der Waals–Covalent Bonding-Inspired Typical Coordination with Ultrahigh Lattice Mismatch as Active Sites for Hydrogen Electrosynthesis","authors":"Xinying Luo, Junjie Xiong, Xiaolong Liu, Zhichang Xiao*, Qinghua Zhang, Yuchen Cai, Bowen Liu, Yang Gao, Tao Liang, Qiang Zheng, Jichen Dong*, Ting Tan*, Zhenxing Wang, Yunqi Liu and Bin Wang*, ","doi":"10.1021/acscatal.4c0404610.1021/acscatal.4c04046","DOIUrl":null,"url":null,"abstract":"<p >We report a van der Waals–covalent bonding interface with boosted hydrogen evolution reaction (HER) catalytic activity compared to the well-known edge defects for two-dimensional catalysts. The central region of a chemical-vapor-deposition-grown multilayer MoS<sub>2</sub> is transformed to Mo<sub>5</sub>N<sub>6</sub>, thus forming a van der Waals–covalent (v–c) interface that has high structural strain due to the large lattice mismatch of 10.5% between the two different phases. The large structural distortion creates several kinds of stretched sites that show ideal HER catalytic activities theoretically, such as the S sites coordinated by 2 Mo atoms and the 3-coordinated N atoms. In experiments, the v–c interface bonding and coordination variations were observed, and a number-of-layers-dependent MoS<sub>2</sub>-to-Mo<sub>5</sub>N<sub>6</sub> transformation mechanism was found. Using the on-chip electrochemical micromeasurements, the catalytic activity of the atoms at the v–c interface was demonstrated to be higher than the edge atoms of either MoS<sub>2</sub> or Mo<sub>5</sub>N<sub>6</sub> sheets. Further macrotests using the as-synthesized powder materials showed greatly enhanced HER performance of the v–c structure than MoS<sub>2</sub> or Mo<sub>5</sub>N<sub>6</sub> sheets. This comprehensive study of the v–c structure shows the synthesis route and a clear bonding interface, establishes the number-of-layers-dependent transformation principles, exhibits high-priority HER activities, and explains the strain/coordination-variation-induced catalytic mechanism.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16074–16085 16074–16085"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c04046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report a van der Waals–covalent bonding interface with boosted hydrogen evolution reaction (HER) catalytic activity compared to the well-known edge defects for two-dimensional catalysts. The central region of a chemical-vapor-deposition-grown multilayer MoS2 is transformed to Mo5N6, thus forming a van der Waals–covalent (v–c) interface that has high structural strain due to the large lattice mismatch of 10.5% between the two different phases. The large structural distortion creates several kinds of stretched sites that show ideal HER catalytic activities theoretically, such as the S sites coordinated by 2 Mo atoms and the 3-coordinated N atoms. In experiments, the v–c interface bonding and coordination variations were observed, and a number-of-layers-dependent MoS2-to-Mo5N6 transformation mechanism was found. Using the on-chip electrochemical micromeasurements, the catalytic activity of the atoms at the v–c interface was demonstrated to be higher than the edge atoms of either MoS2 or Mo5N6 sheets. Further macrotests using the as-synthesized powder materials showed greatly enhanced HER performance of the v–c structure than MoS2 or Mo5N6 sheets. This comprehensive study of the v–c structure shows the synthesis route and a clear bonding interface, establishes the number-of-layers-dependent transformation principles, exhibits high-priority HER activities, and explains the strain/coordination-variation-induced catalytic mechanism.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.