{"title":"Bio-Based Polyurethane Composites with Adjustable Fluorescence and Ultraviolet Shielding for Anti-Counterfeiting and Ultraviolet Protection.","authors":"Mengyao Zhai, Tao Shou, Dexian Yin, Zhi Chen, Yaowen Wu, Yue Liu, Xiuying Zhao, Shikai Hu, Liqun Zhang","doi":"10.1021/acsami.4c12183","DOIUrl":null,"url":null,"abstract":"<p><p>Polyurethane and its composites play an important role in innovative packing materials including anticounterfeiting and ultraviolet protection, however, they are mainly derived from petroleum resources that are not sustainable. In this study, a 100% biobased thermoplastic polyurethane (Bio-TPU) was synthesized using biobased poly(trimethylene ether) glycol, pentamethylene disocyanate, and 1,4-butanediol. Subsequently, biobased tannic acid (TA) was employed to prepare biobased composites. The structures and properties of Bio-TPU and its composites were systematically evaluated. The results showed that the Bio-TPU/TA composite films had excellent and controllable fluorescence and UV-shielding properties. The fluorescence colors of the Bio-TPU/TA composite films could be adjusted to blue, green, and yellow by varying the TA content and adding coupling agents. Moreover, the UV transmittance of the Bio-TPU/TA composites decreased from 79.25 to 5.43% below 400 nm with an increasing TA content, indicating an excellent ultraviolet-barrier performance. Consequently, biobased TPU/TA composite films can be utilized as innovative anticounterfeiting materials and UV-shielding protection films. This study is expected to facilitate sustainable development in the polyurethane industry and broaden the high-end applications of polyurethane such as fashion, electronics, food manufacturing, pharmaceuticals, and finance.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c12183","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Polyurethane and its composites play an important role in innovative packing materials including anticounterfeiting and ultraviolet protection, however, they are mainly derived from petroleum resources that are not sustainable. In this study, a 100% biobased thermoplastic polyurethane (Bio-TPU) was synthesized using biobased poly(trimethylene ether) glycol, pentamethylene disocyanate, and 1,4-butanediol. Subsequently, biobased tannic acid (TA) was employed to prepare biobased composites. The structures and properties of Bio-TPU and its composites were systematically evaluated. The results showed that the Bio-TPU/TA composite films had excellent and controllable fluorescence and UV-shielding properties. The fluorescence colors of the Bio-TPU/TA composite films could be adjusted to blue, green, and yellow by varying the TA content and adding coupling agents. Moreover, the UV transmittance of the Bio-TPU/TA composites decreased from 79.25 to 5.43% below 400 nm with an increasing TA content, indicating an excellent ultraviolet-barrier performance. Consequently, biobased TPU/TA composite films can be utilized as innovative anticounterfeiting materials and UV-shielding protection films. This study is expected to facilitate sustainable development in the polyurethane industry and broaden the high-end applications of polyurethane such as fashion, electronics, food manufacturing, pharmaceuticals, and finance.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture