BCP Buffer Layer Enables Efficient and Stable Dopant-Free P3HT Perovskite Solar Cells.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-11-13 Epub Date: 2024-11-01 DOI:10.1021/acsami.4c15050
Weikui Li, Gang Wang, Yue Long, Li Xiao, Zhuqiang Zhong, Xiuxian Li, Hang Xu, Hao Yan, Qunliang Song
{"title":"BCP Buffer Layer Enables Efficient and Stable Dopant-Free P3HT Perovskite Solar Cells.","authors":"Weikui Li, Gang Wang, Yue Long, Li Xiao, Zhuqiang Zhong, Xiuxian Li, Hang Xu, Hao Yan, Qunliang Song","doi":"10.1021/acsami.4c15050","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(3-hexylthiophene) (P3HT) has garnered significant attention as a novel hole transport material (HTM). Principally, its cost-effective synthesis, excellent hole conductivity, and stable film morphology make it one of the most promising HTMs for perovskite solar cells (PSCs). However, the efficiency of PSCs employing P3HT remains less than ideal, primarily due to the mismatch of energy levels and insufficient interface contact between P3HT and the perovskite film. In this work, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was inserted into the P3HT/perovskite interface for effectively alleviating the recombination loss. BCP could effectively anchor uncoordinated Pb<sup>2+</sup> and establish π-π stacking interactions with P3HT. These interactions not only neutralize flaws to reduce energy depletion but also enhance the configuration of P3HT, aiding in carrier transfer. Consequently, the BCP-modified device achieved an efficiency of 19.27%, which is significantly superior to the control device (12%).</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15050","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(3-hexylthiophene) (P3HT) has garnered significant attention as a novel hole transport material (HTM). Principally, its cost-effective synthesis, excellent hole conductivity, and stable film morphology make it one of the most promising HTMs for perovskite solar cells (PSCs). However, the efficiency of PSCs employing P3HT remains less than ideal, primarily due to the mismatch of energy levels and insufficient interface contact between P3HT and the perovskite film. In this work, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was inserted into the P3HT/perovskite interface for effectively alleviating the recombination loss. BCP could effectively anchor uncoordinated Pb2+ and establish π-π stacking interactions with P3HT. These interactions not only neutralize flaws to reduce energy depletion but also enhance the configuration of P3HT, aiding in carrier transfer. Consequently, the BCP-modified device achieved an efficiency of 19.27%, which is significantly superior to the control device (12%).

Abstract Image

BCP 缓冲层实现了高效稳定的无掺杂 P3HT Perovskite 太阳能电池。
作为一种新型空穴传输材料(HTM),聚(3-己基噻吩)(P3HT)备受关注。主要原因是其合成成本低、优异的空穴传导性和稳定的薄膜形态,使其成为最有希望用于过氧化物太阳能电池(PSC)的 HTM 材料之一。然而,采用 P3HT 的 PSC 的效率仍然不够理想,主要原因是 P3HT 与过氧化物薄膜之间的能级不匹配和界面接触不充分。在这项研究中,2,9-二甲基-4,7-二苯基-1,10-菲罗啉(BCP)被插入到 P3HT/过氧化物界面中,从而有效地减少了重组损耗。BCP 能有效锚定未配位的 Pb2+,并与 P3HT 建立起 π-π 堆积相互作用。这些相互作用不仅能中和缺陷以减少能量损耗,还能增强 P3HT 的构型,有助于载流子传输。因此,BCP 改性器件的效率达到了 19.27%,明显优于对照器件(12%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信