Plasma acellular transcriptome contains Parkinson's disease signatures that can inform clinical diagnosis.

Aleksandra Beric, Alejandro Cisterna-García, Charissa Martin, Ravindra Kumar, Isabel Alfradique-Dunham, Kevin Boyer, Ibrahim Olabayode Saliu, Shinnosuke Yamada, Jessie Sanford, Daniel Western, Menghan Liu, Ignacio Alvarez, Joel S Perlmutter, Scott A Norris, Pau Pastor, Guoyan Zhao, Juan Botia, Laura Ibanez
{"title":"Plasma acellular transcriptome contains Parkinson's disease signatures that can inform clinical diagnosis.","authors":"Aleksandra Beric, Alejandro Cisterna-García, Charissa Martin, Ravindra Kumar, Isabel Alfradique-Dunham, Kevin Boyer, Ibrahim Olabayode Saliu, Shinnosuke Yamada, Jessie Sanford, Daniel Western, Menghan Liu, Ignacio Alvarez, Joel S Perlmutter, Scott A Norris, Pau Pastor, Guoyan Zhao, Juan Botia, Laura Ibanez","doi":"10.1101/2024.10.18.24315717","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to identify plasma cell-free transcripts (cfRNA) associated with Parkinson's disease (PD) that also have a high predictive value to differentiate PD from healthy controls. Leveraging two independent populations from two different movement disorder centers we identified 2,188 differentially expressed cfRNAs after meta-analysis. The identified transcripts were enriched in PD relevant pathways, such as PD (p=9.26×10<sup>-4</sup>), ubiquitin-mediated proteolysis (p=7.41×10<sup>-5</sup>) and endocytosis (p=4.21×10<sup>-6</sup>). Utilizing in-house and publicly available brain, whole blood, and acellular plasma transcriptomic and proteomic PD datasets, we found significant overlap across dysregulated biological species in the different tissues and the different biological layers. We developed three predictive models containing increasing number of transcripts that can distinguish PD from healthy control with an area under the ROC Curve (AUC) ≥0.85. Finally, we showed that several of the predictive transcripts significantly correlate with symptom severity measured by UPDRS-III. Overall, we have demonstrated that cfRNA contains pathological signatures and has the potential to be utilized as biomarker to aid in PD diagnostics and monitoring.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.18.24315717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We aimed to identify plasma cell-free transcripts (cfRNA) associated with Parkinson's disease (PD) that also have a high predictive value to differentiate PD from healthy controls. Leveraging two independent populations from two different movement disorder centers we identified 2,188 differentially expressed cfRNAs after meta-analysis. The identified transcripts were enriched in PD relevant pathways, such as PD (p=9.26×10-4), ubiquitin-mediated proteolysis (p=7.41×10-5) and endocytosis (p=4.21×10-6). Utilizing in-house and publicly available brain, whole blood, and acellular plasma transcriptomic and proteomic PD datasets, we found significant overlap across dysregulated biological species in the different tissues and the different biological layers. We developed three predictive models containing increasing number of transcripts that can distinguish PD from healthy control with an area under the ROC Curve (AUC) ≥0.85. Finally, we showed that several of the predictive transcripts significantly correlate with symptom severity measured by UPDRS-III. Overall, we have demonstrated that cfRNA contains pathological signatures and has the potential to be utilized as biomarker to aid in PD diagnostics and monitoring.

血浆细胞转录组包含帕金森病特征,可为临床诊断提供依据。
我们的目标是找出与帕金森病(PD)相关的无血浆细胞转录本(cfRNA),这些转录本在区分帕金森病与健康对照组方面也具有很高的预测价值。利用来自两个不同运动障碍中心的两个独立人群,我们经过荟萃分析确定了 2188 个差异表达的 cfRNA。鉴定出的转录本富集在与帕金森病相关的通路中,如帕金森病通路(p=9.26×10 -4)、泛素介导的蛋白水解通路(p=7.41×10 -5)和内吞通路(p=4.21×10 -6)。利用内部和公开的大脑、全血和无细胞血浆转录组和蛋白质组 PD 数据集,我们发现不同组织和不同生物层中调控失调的生物物种之间存在显著重叠。我们建立了三个预测模型,其中包含的转录本数量不断增加,这些模型能将脊髓灰质炎与健康对照区分开来,其 ROC 曲线下面积 (AUC) ≥0.85。最后,我们发现其中几个预测转录本与 UPDRS-III 测定的症状严重程度显著相关。总之,我们证明了 cfRNA 含有病理特征,有可能被用作生物标记物来帮助诊断和监测帕金森病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信