Deep Learning-Based Detection of Carotid Plaques Informs Cardiovascular Risk Prediction and Reveals Genetic Drivers of Atherosclerosis.

Murad Omarov, Lanyue Zhang, Saman Doroodgar Jorshery, Rainer Malik, Barnali Das, Tiffany R Bellomo, Ulrich Mansmann, Martin J Menten, Pradeep Natarajan, Martin Dichgans, Vineet K Raghu, Christopher D Anderson, Marios K Georgakis
{"title":"Deep Learning-Based Detection of Carotid Plaques Informs Cardiovascular Risk Prediction and Reveals Genetic Drivers of Atherosclerosis.","authors":"Murad Omarov, Lanyue Zhang, Saman Doroodgar Jorshery, Rainer Malik, Barnali Das, Tiffany R Bellomo, Ulrich Mansmann, Martin J Menten, Pradeep Natarajan, Martin Dichgans, Vineet K Raghu, Christopher D Anderson, Marios K Georgakis","doi":"10.1101/2024.10.17.24315675","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerotic cardiovascular disease, the leading cause of global mortality, is driven by lipid accumulation and plaque formation within arterial walls. Carotid plaques, detectable via ultrasound, are a well-established marker of subclinical atherosclerosis. In this study, we trained a deep learning model to detect plaques in 177,757 carotid ultrasound images from 19,499 UK Biobank (UKB) participants (aged 47-83 years) to assess the prevalence, risk factors, prognostic significance, and genetic architecture of carotid atherosclerosis in a large population-based cohort. The model demonstrated high performance metrics with accuracy, sensitivity, specificity, and positive predictive value of 89.3%, 89.5%, 89.2%, and 82.9%, respectively, identifying carotid plaques in 45% of the population. Plaque presence and count were significantly associated with future cardiovascular events over a median follow-up period of up to 7 years, leading to improved risk reclassification beyond established clinical prediction models. A genome-wide association study (GWAS) meta-analysis of carotid plaques (29,790 cases, 36,847 controls) uncovered two novel genomic loci (p < 5×10<sup>-8</sup>) with downstream analyses implicating lipoprotein(a) and interleukin-6 signaling, both targets of investigational drugs in advanced clinical development. Observational and Mendelian randomization analyses showed associations between smoking, low-density-lipoprotein (LDL) cholesterol, and high blood pressure and the odds of carotid plaque presence. Our study underscores the potential of carotid plaque assessment for improving cardiovascular risk prediction, provides novel insights into the genetic basis of subclinical atherosclerosis, and offers a valuable resource for advancing atherosclerosis research at the population scale.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527046/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.17.24315675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerotic cardiovascular disease, the leading cause of global mortality, is driven by lipid accumulation and plaque formation within arterial walls. Carotid plaques, detectable via ultrasound, are a well-established marker of subclinical atherosclerosis. In this study, we trained a deep learning model to detect plaques in 177,757 carotid ultrasound images from 19,499 UK Biobank (UKB) participants (aged 47-83 years) to assess the prevalence, risk factors, prognostic significance, and genetic architecture of carotid atherosclerosis in a large population-based cohort. The model demonstrated high performance metrics with accuracy, sensitivity, specificity, and positive predictive value of 89.3%, 89.5%, 89.2%, and 82.9%, respectively, identifying carotid plaques in 45% of the population. Plaque presence and count were significantly associated with future cardiovascular events over a median follow-up period of up to 7 years, leading to improved risk reclassification beyond established clinical prediction models. A genome-wide association study (GWAS) meta-analysis of carotid plaques (29,790 cases, 36,847 controls) uncovered two novel genomic loci (p < 5×10-8) with downstream analyses implicating lipoprotein(a) and interleukin-6 signaling, both targets of investigational drugs in advanced clinical development. Observational and Mendelian randomization analyses showed associations between smoking, low-density-lipoprotein (LDL) cholesterol, and high blood pressure and the odds of carotid plaque presence. Our study underscores the potential of carotid plaque assessment for improving cardiovascular risk prediction, provides novel insights into the genetic basis of subclinical atherosclerosis, and offers a valuable resource for advancing atherosclerosis research at the population scale.

基于深度学习的颈动脉斑块检测为心血管风险预测提供信息,并揭示动脉粥样硬化的遗传驱动因素。
动脉粥样硬化性心血管疾病是导致全球死亡的主要原因,其驱动力是动脉壁内的脂质积累和斑块形成。通过超声波检测颈动脉斑块是亚临床动脉粥样硬化的公认标志。在这项研究中,我们训练了一个深度学习模型来检测来自 19499 名英国生物库(UKB)参与者(年龄在 47-83 岁之间)的 177757 张颈动脉超声图像中的斑块,以评估大型人群队列中颈动脉粥样硬化的患病率、风险因素、预后意义和遗传结构。该模型的准确性、灵敏度、特异性和阳性预测值分别为89.3%、89.5%、89.2%和82.9%,在45%的人群中识别出了颈动脉斑块,表现出很高的性能指标。在长达7年的中位随访期内,斑块的存在和数量与未来的心血管事件有明显的相关性,从而改进了风险再分类,超越了既有的临床预测模型。颈动脉斑块的全基因组关联研究(GWAS)荟萃分析(29,790 例病例,36,847 例对照)发现了两个新的基因组位点(p < 5×10 -8),下游分析显示这两个位点与脂蛋白(a)和白细胞介素-6 信号转导有关,这两个位点都是正在临床开发的研究药物的靶点。观察和孟德尔随机分析表明,吸烟、低密度脂蛋白胆固醇和高血压与颈动脉斑块存在的几率有关。我们的研究强调了颈动脉斑块评估在改善心血管风险预测方面的潜力,为亚临床动脉粥样硬化的遗传基础提供了新的见解,并为推进人群规模的动脉粥样硬化研究提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信