3D-printed biomimetic scaffolds loaded with ADSCs and BMP-2 for enhanced rotator cuff repair†

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Zhonglian Wu, Jian Yang, Hui Chong, Xiaomei Dai, Haidi Sun, Junli Shi, Meijuan Yuan, Dianwei Liu, Mengbo Dang, Hang Yao and Wenyong Fei
{"title":"3D-printed biomimetic scaffolds loaded with ADSCs and BMP-2 for enhanced rotator cuff repair†","authors":"Zhonglian Wu, Jian Yang, Hui Chong, Xiaomei Dai, Haidi Sun, Junli Shi, Meijuan Yuan, Dianwei Liu, Mengbo Dang, Hang Yao and Wenyong Fei","doi":"10.1039/D4TB01073F","DOIUrl":null,"url":null,"abstract":"<p >Rotator cuff tear repair poses significant challenges due to the complex gradient interface structure. In the face of disease-related disruptions in the tendon–bone interface (TBI), the strategy of constructing a biomimetic scaffold is a promising avenue. A novel 3D-printed rotator cuff scaffold loaded adipose stem cells (ADSCs), bone morphogenetic protein-2 (BMP-2), and collagen type I (COL I). The efficiency of the slow-release BMP-2 design depended on the dopamine-hyaluronic acid (HAD) and BMP-2 reaction. The cumulative release of BMP-2 was 44.97 ± 5.45% at 4 weeks. The 3D-printed bilayer scaffold, incorporating COL I and BMP-2, effectively promoted the differentiation of ADSCs into osteogenic, tenogenic, and chondrogenic lineages <em>in vitro</em>. The combination of 3D-printed bioactive scaffolds and ADSCs demonstrated a superior repair effect on rotator cuff injuries <em>in vivo</em>. Therefore, these findings indicates that the 3D-printed biomimetic scaffold loaded with ADSCs and BMP-2 holds potential as a promising graft for TBI healing.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 47","pages":" 12365-12377"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01073f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Rotator cuff tear repair poses significant challenges due to the complex gradient interface structure. In the face of disease-related disruptions in the tendon–bone interface (TBI), the strategy of constructing a biomimetic scaffold is a promising avenue. A novel 3D-printed rotator cuff scaffold loaded adipose stem cells (ADSCs), bone morphogenetic protein-2 (BMP-2), and collagen type I (COL I). The efficiency of the slow-release BMP-2 design depended on the dopamine-hyaluronic acid (HAD) and BMP-2 reaction. The cumulative release of BMP-2 was 44.97 ± 5.45% at 4 weeks. The 3D-printed bilayer scaffold, incorporating COL I and BMP-2, effectively promoted the differentiation of ADSCs into osteogenic, tenogenic, and chondrogenic lineages in vitro. The combination of 3D-printed bioactive scaffolds and ADSCs demonstrated a superior repair effect on rotator cuff injuries in vivo. Therefore, these findings indicates that the 3D-printed biomimetic scaffold loaded with ADSCs and BMP-2 holds potential as a promising graft for TBI healing.

Abstract Image

装载 ADSCs 和 BMP-2 的 3D 打印仿生支架用于增强肩袖修复。
由于梯度界面结构复杂,肩袖撕裂修复面临着巨大挑战。面对与疾病相关的肌腱骨界面(TBI)破坏,构建生物仿生支架的策略是一个很有前景的途径。一种新型三维打印肩袖支架负载了脂肪干细胞(ADSCs)、骨形态发生蛋白-2(BMP-2)和 I 型胶原蛋白(COL I)。缓释 BMP-2 设计的效率取决于多巴胺-透明质酸(HAD)和 BMP-2 反应。4 周时,BMP-2 的累积释放率为 44.97 ± 5.45%。结合了 COL I 和 BMP-2 的三维打印双层支架能有效促进 ADSCs 在体外分化为成骨、成韧和成软骨细胞系。三维打印生物活性支架与 ADSCs 的结合在体内对肩袖损伤具有卓越的修复效果。因此,这些研究结果表明,负载有 ADSCs 和 BMP-2 的三维打印仿生支架有望成为创伤性休克愈合的移植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信