Understanding the oscillations of an epidemic due to vaccine hesitancy.

IF 2.6 4区 工程技术 Q1 Mathematics
Anthony Morciglio, R K P Zia, James M Hyman, Yi Jiang
{"title":"Understanding the oscillations of an epidemic due to vaccine hesitancy.","authors":"Anthony Morciglio, R K P Zia, James M Hyman, Yi Jiang","doi":"10.3934/mbe.2024299","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccine hesitancy threatens to reverse the progress in tackling vaccine-preventable diseases. We used an $ SIS $ model with a game theory model for vaccination and parameters from the COVID-19 pandemic to study how vaccine hesitancy impacts epidemic dynamics. The system showed three asymptotic behaviors: total rejection of vaccinations, complete acceptance, and oscillations. With increasing fear of infection, stable endemic states become periodic oscillations. Our results suggest that managing fear of infection relative to vaccination is vital to successful mass vaccinations.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024299","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Vaccine hesitancy threatens to reverse the progress in tackling vaccine-preventable diseases. We used an $ SIS $ model with a game theory model for vaccination and parameters from the COVID-19 pandemic to study how vaccine hesitancy impacts epidemic dynamics. The system showed three asymptotic behaviors: total rejection of vaccinations, complete acceptance, and oscillations. With increasing fear of infection, stable endemic states become periodic oscillations. Our results suggest that managing fear of infection relative to vaccination is vital to successful mass vaccinations.

了解疫苗犹豫不决导致的流行病振荡。
疫苗犹豫不决有可能逆转在应对疫苗可预防疾病方面取得的进展。我们使用了一个带有疫苗接种博弈论模型和 COVID-19 大流行病参数的 SIS 模型,来研究疫苗犹豫对流行病动态的影响。该系统表现出三种渐进行为:完全拒绝接受疫苗、完全接受和振荡。随着对感染恐惧的增加,稳定的流行状态变成了周期性振荡。我们的研究结果表明,管理相对于疫苗接种的感染恐惧对于成功的大规模疫苗接种至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信