Sonam Aggarwal, Isha Gupta, Ashok Kumar, Sandeep Kautish, Abdulaziz S Almazyad, Ali Wagdy Mohamed, Frank Werner, Mohammad Shokouhifar
{"title":"GastroFuse-Net: an ensemble deep learning framework designed for gastrointestinal abnormality detection in endoscopic images.","authors":"Sonam Aggarwal, Isha Gupta, Ashok Kumar, Sandeep Kautish, Abdulaziz S Almazyad, Ali Wagdy Mohamed, Frank Werner, Mohammad Shokouhifar","doi":"10.3934/mbe.2024300","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional Neural Networks (CNNs) have received substantial attention as a highly effective tool for analyzing medical images, notably in interpreting endoscopic images, due to their capacity to provide results equivalent to or exceeding those of medical specialists. This capability is particularly crucial in the realm of gastrointestinal disorders, where even experienced gastroenterologists find the automatic diagnosis of such conditions using endoscopic pictures to be a challenging endeavor. Currently, gastrointestinal findings in medical diagnosis are primarily determined by manual inspection by competent gastrointestinal endoscopists. This evaluation procedure is labor-intensive, time-consuming, and frequently results in high variability between laboratories. To address these challenges, we introduced a specialized CNN-based architecture called GastroFuse-Net, designed to recognize human gastrointestinal diseases from endoscopic images. GastroFuse-Net was developed by combining features extracted from two different CNN models with different numbers of layers, integrating shallow and deep representations to capture diverse aspects of the abnormalities. The Kvasir dataset was used to thoroughly test the proposed deep learning model. This dataset contained images that were classified according to structures (cecum, z-line, pylorus), diseases (ulcerative colitis, esophagitis, polyps), or surgical operations (dyed resection margins, dyed lifted polyps). The proposed model was evaluated using various measures, including specificity, recall, precision, F1-score, Mathew's Correlation Coefficient (MCC), and accuracy. The proposed model GastroFuse-Net exhibited exceptional performance, achieving a precision of 0.985, recall of 0.985, specificity of 0.984, F1-score of 0.997, MCC of 0.982, and an accuracy of 98.5%.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024300","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional Neural Networks (CNNs) have received substantial attention as a highly effective tool for analyzing medical images, notably in interpreting endoscopic images, due to their capacity to provide results equivalent to or exceeding those of medical specialists. This capability is particularly crucial in the realm of gastrointestinal disorders, where even experienced gastroenterologists find the automatic diagnosis of such conditions using endoscopic pictures to be a challenging endeavor. Currently, gastrointestinal findings in medical diagnosis are primarily determined by manual inspection by competent gastrointestinal endoscopists. This evaluation procedure is labor-intensive, time-consuming, and frequently results in high variability between laboratories. To address these challenges, we introduced a specialized CNN-based architecture called GastroFuse-Net, designed to recognize human gastrointestinal diseases from endoscopic images. GastroFuse-Net was developed by combining features extracted from two different CNN models with different numbers of layers, integrating shallow and deep representations to capture diverse aspects of the abnormalities. The Kvasir dataset was used to thoroughly test the proposed deep learning model. This dataset contained images that were classified according to structures (cecum, z-line, pylorus), diseases (ulcerative colitis, esophagitis, polyps), or surgical operations (dyed resection margins, dyed lifted polyps). The proposed model was evaluated using various measures, including specificity, recall, precision, F1-score, Mathew's Correlation Coefficient (MCC), and accuracy. The proposed model GastroFuse-Net exhibited exceptional performance, achieving a precision of 0.985, recall of 0.985, specificity of 0.984, F1-score of 0.997, MCC of 0.982, and an accuracy of 98.5%.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).