Masaya Mori, Yuto Omae, Yohei Kakimoto, Makoto Sasaki, Jun Toyotani
{"title":"Analyzing factors of daily travel distances in Japan during the COVID-19 pandemic.","authors":"Masaya Mori, Yuto Omae, Yohei Kakimoto, Makoto Sasaki, Jun Toyotani","doi":"10.3934/mbe.2024305","DOIUrl":null,"url":null,"abstract":"<p><p>The global impact of the COVID-19 pandemic is widely recognized as a significant concern, with human flow playing a crucial role in its propagation. Consequently, recent research has focused on identifying and analyzing factors that can effectively regulate human flow. However, among the multiple factors that are expected to have an effect, few studies have investigated those that are particularly associated with human flow during the COVID-19 pandemic. In addition, few studies have investigated how regional characteristics and the number of vaccinations for these factors affect human flow. Furthermore, increasing the number of verified cases in countries and regions with insufficient reports is important to generalize conclusions. Therefore, in this study, a group-level analysis was conducted for Narashino City, Chiba Prefecture, Japan, using a human flow prediction model based on machine learning. High-importance groups were subdivided by regional characteristics and the number of vaccinations, and visual and correlation analyses were conducted at the factor level. The findings indicated that tree-based models, especially LightGBM, performed better in terms of prediction. In addition, the cumulative number of vaccinated individuals and the number of newly infected individuals are likely explanatory factors for changes in human flow. The analyses suggested a tendency to move with respect to the number of newly infected individuals in Japan or Tokyo, rather than the number of new infections in the area where they lived when vaccination had not started. With the implementation of vaccination, attention to the number of newly infected individuals in their residential areas may increase. However, after the spread of vaccination, the perception of infection risk may decrease. These findings can contribute to the proposal of new measures for efficiently controlling human flows and determining when to mitigate or reinforce specific measures.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024305","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The global impact of the COVID-19 pandemic is widely recognized as a significant concern, with human flow playing a crucial role in its propagation. Consequently, recent research has focused on identifying and analyzing factors that can effectively regulate human flow. However, among the multiple factors that are expected to have an effect, few studies have investigated those that are particularly associated with human flow during the COVID-19 pandemic. In addition, few studies have investigated how regional characteristics and the number of vaccinations for these factors affect human flow. Furthermore, increasing the number of verified cases in countries and regions with insufficient reports is important to generalize conclusions. Therefore, in this study, a group-level analysis was conducted for Narashino City, Chiba Prefecture, Japan, using a human flow prediction model based on machine learning. High-importance groups were subdivided by regional characteristics and the number of vaccinations, and visual and correlation analyses were conducted at the factor level. The findings indicated that tree-based models, especially LightGBM, performed better in terms of prediction. In addition, the cumulative number of vaccinated individuals and the number of newly infected individuals are likely explanatory factors for changes in human flow. The analyses suggested a tendency to move with respect to the number of newly infected individuals in Japan or Tokyo, rather than the number of new infections in the area where they lived when vaccination had not started. With the implementation of vaccination, attention to the number of newly infected individuals in their residential areas may increase. However, after the spread of vaccination, the perception of infection risk may decrease. These findings can contribute to the proposal of new measures for efficiently controlling human flows and determining when to mitigate or reinforce specific measures.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).