{"title":"A novel approach to detecting microduplication in split hand/foot malformation type 3 at the single-cell level: SHFM as a case study.","authors":"Yaqian Wang, Yang Li, Lidong Zeng, Wenbo Li, Xin Dong, Jia Guo, Xiangrui Meng, Jiacheng Lu, Jiawei Xu","doi":"10.1186/s13023-024-03386-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Split hand/foot malformation (SHFM) is a congenital limb deficiency characterized by missing or shortened central digits. Several gene loci have been associated with SHFM. Identifying microduplications at the single-cell level is challenging in clinical practice, and traditional detection methods may lead to misdiagnoses in embryos and pregnant women.</p><p><strong>Results: </strong>In this research, we utilized a low cell count and whole-genome amplification products to employ single nucleotide polymorphism arrays, next-generation sequencing, and third-generation sequencing methods to detect copy number variants of microduplications in a SHFM3 case with limited DNA. Additionally, Karyomapping and combined linkage analysis were conducted to validate the results.</p><p><strong>Conclusions: </strong>This study establishes a new strategy for identifying microduplications or microdeletions at the single-cell level in clinical preimplantation genetic testing, enhancing the efficiency and accuracy of diagnosing microduplication or microdeletion diseases during IVF-PGT and prenatal diagnosis.</p>","PeriodicalId":19651,"journal":{"name":"Orphanet Journal of Rare Diseases","volume":"19 1","pages":"406"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orphanet Journal of Rare Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13023-024-03386-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Split hand/foot malformation (SHFM) is a congenital limb deficiency characterized by missing or shortened central digits. Several gene loci have been associated with SHFM. Identifying microduplications at the single-cell level is challenging in clinical practice, and traditional detection methods may lead to misdiagnoses in embryos and pregnant women.
Results: In this research, we utilized a low cell count and whole-genome amplification products to employ single nucleotide polymorphism arrays, next-generation sequencing, and third-generation sequencing methods to detect copy number variants of microduplications in a SHFM3 case with limited DNA. Additionally, Karyomapping and combined linkage analysis were conducted to validate the results.
Conclusions: This study establishes a new strategy for identifying microduplications or microdeletions at the single-cell level in clinical preimplantation genetic testing, enhancing the efficiency and accuracy of diagnosing microduplication or microdeletion diseases during IVF-PGT and prenatal diagnosis.
期刊介绍:
Orphanet Journal of Rare Diseases is an open access, peer-reviewed journal that encompasses all aspects of rare diseases and orphan drugs. The journal publishes high-quality reviews on specific rare diseases. In addition, the journal may consider articles on clinical trial outcome reports, either positive or negative, and articles on public health issues in the field of rare diseases and orphan drugs. The journal does not accept case reports.