{"title":"The influence of categorical stimuli on relational memory binding.","authors":"Hillary Schwarb, Michael Dulas, Neal Cohen","doi":"10.1101/lm.054006.124","DOIUrl":null,"url":null,"abstract":"<p><p>Binding of arbitrary information into distinct memory representations that can be used to guide behavior is a hallmark of relational memory. What is and is not bound into a memory representation and how those things influence the organization of that representation remain topics of interest. While some information is intentionally and effortfully bound-often the information that is consistent with task goals or expectations about what information may be required later-other information appears to be bound automatically. The present set of experiments sought to investigate whether spatial memory would be systematically influenced by the presence and absence of distinct categories of stimuli on a spatial reconstruction task. In this task, participants must learn multiple item-location bindings and place each item back in its studied location after a short delay. Across three experiments, participants made significantly more within-category errors (i.e., misassigning one item to the location of a different item from the same category) than between-category errors (i.e., misassigning one item to the location of an item from a different category) when categories were perceptually or semantically distinct. These data reveal that category information contributed to the organization of the memory representation and influenced spatial reconstruction performance. Together, these results suggest that categorical information can influence memory organization, and not always to the benefit of overall task performance.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.054006.124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Binding of arbitrary information into distinct memory representations that can be used to guide behavior is a hallmark of relational memory. What is and is not bound into a memory representation and how those things influence the organization of that representation remain topics of interest. While some information is intentionally and effortfully bound-often the information that is consistent with task goals or expectations about what information may be required later-other information appears to be bound automatically. The present set of experiments sought to investigate whether spatial memory would be systematically influenced by the presence and absence of distinct categories of stimuli on a spatial reconstruction task. In this task, participants must learn multiple item-location bindings and place each item back in its studied location after a short delay. Across three experiments, participants made significantly more within-category errors (i.e., misassigning one item to the location of a different item from the same category) than between-category errors (i.e., misassigning one item to the location of an item from a different category) when categories were perceptually or semantically distinct. These data reveal that category information contributed to the organization of the memory representation and influenced spatial reconstruction performance. Together, these results suggest that categorical information can influence memory organization, and not always to the benefit of overall task performance.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.