Kinetochores grip microtubules with directionally asymmetric strength.

IF 7.4 1区 生物学 Q1 CELL BIOLOGY
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-11-01 DOI:10.1083/jcb.202405176
Joshua D Larson, Natalie A Heitkamp, Lucas E Murray, Andrew R Popchock, Sue Biggins, Charles L Asbury
{"title":"Kinetochores grip microtubules with directionally asymmetric strength.","authors":"Joshua D Larson, Natalie A Heitkamp, Lucas E Murray, Andrew R Popchock, Sue Biggins, Charles L Asbury","doi":"10.1083/jcb.202405176","DOIUrl":null,"url":null,"abstract":"<p><p>For accurate mitosis, all chromosomes must achieve \"biorientation,\" with replicated sister chromatids coupled via kinetochores to the plus ends of opposing microtubules. However, kinetochores first bind the sides of microtubules and subsequently find plus ends through a trial-and-error process; accurate biorientation depends on the selective release of erroneous attachments. Proposed mechanisms for error-correction have focused mainly on plus-end attachments. Whether erroneous side attachments are distinguished from correct side attachments is unknown. Here, we show that side-attached kinetochores are very sensitive to microtubule polarity, gripping sixfold more strongly when pulled toward plus versus minus ends. This directionally asymmetric grip is conserved in human and yeast subcomplexes, and it correlates with changes in the axial arrangement of subcomplexes within the kinetochore, suggesting that internal architecture dictates attachment strength. We propose that the kinetochore's directional grip promotes accuracy during early mitosis by stabilizing correct attachments even before both sisters have found plus ends.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533501/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202405176","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For accurate mitosis, all chromosomes must achieve "biorientation," with replicated sister chromatids coupled via kinetochores to the plus ends of opposing microtubules. However, kinetochores first bind the sides of microtubules and subsequently find plus ends through a trial-and-error process; accurate biorientation depends on the selective release of erroneous attachments. Proposed mechanisms for error-correction have focused mainly on plus-end attachments. Whether erroneous side attachments are distinguished from correct side attachments is unknown. Here, we show that side-attached kinetochores are very sensitive to microtubule polarity, gripping sixfold more strongly when pulled toward plus versus minus ends. This directionally asymmetric grip is conserved in human and yeast subcomplexes, and it correlates with changes in the axial arrangement of subcomplexes within the kinetochore, suggesting that internal architecture dictates attachment strength. We propose that the kinetochore's directional grip promotes accuracy during early mitosis by stabilizing correct attachments even before both sisters have found plus ends.

动芯以方向不对称的力量抓住微管。
为了实现准确的有丝分裂,所有染色体都必须实现 "生物定向",复制的姐妹染色单体通过动核与相对的微管的正端耦合。然而,动核首先与微管的两侧结合,然后通过试错过程找到正端;准确的生物定向取决于选择性地释放错误的连接。所提出的纠错机制主要集中在正端附着上。至于错误的侧附着是否能与正确的侧附着区分开来,目前还不得而知。在这里,我们发现侧附着的动核对微管极性非常敏感,当被拉向正负端时,其抓取力是负端的六倍。这种方向不对称的抓取在人类和酵母亚复合物中是保留的,它与动核内亚复合物轴向排列的变化相关,表明内部结构决定了附着强度。我们认为,在有丝分裂早期,动核的方向性抓握通过稳定正确的附着,甚至在姐妹双方都找到正端之前,就能提高附着的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cell Biology
Journal of Cell Biology 生物-细胞生物学
CiteScore
12.60
自引率
2.60%
发文量
213
审稿时长
1 months
期刊介绍: The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信