Jun Lin, Zhenyu Wang, Hongtao Wang, Yuping Li, Yao Liu, Yige He, Qian Liu, Zichuan Chen, Yuan Ji
{"title":"Screening of Diabetes-Associated Autoantigens and Serum Antibody Profiles Using a Phage Display System.","authors":"Jun Lin, Zhenyu Wang, Hongtao Wang, Yuping Li, Yao Liu, Yige He, Qian Liu, Zichuan Chen, Yuan Ji","doi":"10.1155/2024/1220644","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aims/Introduction:</b> Phage display method is a crucial tool to find novel clinically valuable diabetes-associated autoantigens and identify known autoantigen epitopes that are associated with diabetes and could provide scientific support and guidance for the artificial construction and synthesis of Type I diabetes mellitus (T1DM) novel biomarkers. <b>Materials and Methods:</b> The phage display system was used for the \"biopanning\" of T1DM serum. Following the sequencing of the phage DNAs, the homologous sequences of the above fusion heptapeptide were further investigated by BLAST to track the origin of the polypeptide sequences. The antibody spectrum revealed new T1DM-associated epitopes and antibodies. <b>Results:</b> A total of 1200 phage DNA were sequenced and 9 conserved polypeptide sequences were collected. It was confirmed that the zinc transporter and islet amyloid protease were among them. The conserved polypeptide sequence 8 and another three distinctive polypeptide sequences derived from Proteus were discovered. Furthermore, we expressed recombinant proteins with homologous polypeptide sequences for the human islet amyloid polypeptide (IAPP) and polypeptide precursor human zinc transporter 8 (ZNT8). Through clinical sample detection for the serum from T1DM (<i>n</i> = 100) and T2DM (<i>n</i> = 200) patients, results demonstrate the importance and relevance of these polypeptides in the recognition and classification of various forms of diabetes. <b>Conclusion:</b> Human pancreatic and concurrent bacterial-derived protein antigens and their epitopes were identified in this research by the phage display system, which is crucial for distinguishing different types of diabetes.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/1220644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims/Introduction: Phage display method is a crucial tool to find novel clinically valuable diabetes-associated autoantigens and identify known autoantigen epitopes that are associated with diabetes and could provide scientific support and guidance for the artificial construction and synthesis of Type I diabetes mellitus (T1DM) novel biomarkers. Materials and Methods: The phage display system was used for the "biopanning" of T1DM serum. Following the sequencing of the phage DNAs, the homologous sequences of the above fusion heptapeptide were further investigated by BLAST to track the origin of the polypeptide sequences. The antibody spectrum revealed new T1DM-associated epitopes and antibodies. Results: A total of 1200 phage DNA were sequenced and 9 conserved polypeptide sequences were collected. It was confirmed that the zinc transporter and islet amyloid protease were among them. The conserved polypeptide sequence 8 and another three distinctive polypeptide sequences derived from Proteus were discovered. Furthermore, we expressed recombinant proteins with homologous polypeptide sequences for the human islet amyloid polypeptide (IAPP) and polypeptide precursor human zinc transporter 8 (ZNT8). Through clinical sample detection for the serum from T1DM (n = 100) and T2DM (n = 200) patients, results demonstrate the importance and relevance of these polypeptides in the recognition and classification of various forms of diabetes. Conclusion: Human pancreatic and concurrent bacterial-derived protein antigens and their epitopes were identified in this research by the phage display system, which is crucial for distinguishing different types of diabetes.
期刊介绍:
International Journal of Microbiology is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies on microorganisms and their interaction with hosts and the environment. The journal covers all microbes, including bacteria, fungi, viruses, archaea, and protozoa. Basic science will be considered, as well as medical and applied research.