Necmettin Turgut, Funda Cengiz Çallıoğlu, Aytül Bayraktar, Mehtap Savran, Halil Aşcı, Kanat Gülle, Meriç Ünal
{"title":"FGF-2 enriched nanofiber scaffold for advancing achilles tendon healing: a comparative experimental investigation.","authors":"Necmettin Turgut, Funda Cengiz Çallıoğlu, Aytül Bayraktar, Mehtap Savran, Halil Aşcı, Kanat Gülle, Meriç Ünal","doi":"10.3389/fsurg.2024.1424734","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Achilles tendon rupture is a common and debilitating injury that significantly impacts mobility and quality of life. Effective treatment options that promote faster and more complete healing are needed. Fibroblast growth factor-2 (FGF-2) has shown potential in enhancing tendon repair. This study aims to investigate the efficacy of FGF-2 in promoting tendon healing in a rat model of Achilles tendon rupture, providing insights into its potential as a therapeutic option.</p><p><strong>Materials and methods: </strong>Forty-eight rat hind legs with complete Achilles tendon ruptures were divided into four equal groups: the Sham (S) group (tendon repair only), the Polymer (P) group (tendon repair with scaffold wrapping), the Produced FGF-2 (PF) group (scaffold coated with lab-produced FGF-2), and the Commercial FGF-2 (CF) group (scaffold coated with commercially sourced FGF-2). Histological analyses at two and four weeks post-surgery evaluated healing based on nuclear morphology, vascularity, fibril organization, inflammation, and adipogenesis.</p><p><strong>Results: </strong>At the end of the second week, no macroscopic healing was observed in one rat each from the S and P groups. By the end of the fourth week, macroscopic healing was observed in all groups. The S and P groups exhibited similarly severe fibril disorganization, pathological adipogenesis, and sustained inflammation, particularly at the fourth week. In contrast, the CF group demonstrated improved tendon healing with increased vascularity and extracellular matrix, lower inflammatory cell infiltration, and better fibril organization. Pathological adipogenesis was absent in the CF group, especially at the fourth week. The PF group showed comparable improvements at the second week but experienced a relapse by the 4th week, with increased inflammation and adipogenesis.</p><p><strong>Conclusion: </strong>FGF-2 coated scaffolds significantly enhanced tendon healing in a rat Achilles tendon rupture model by improving fibril organization, increasing vascularity, and reducing inflammation and pathological adipogenesis. These findings suggest that FGF-2 could be a promising therapeutic option for accelerating tendon repair. Future perspectives on tendon repair will focus on enhancing FGF-2 delivery using innovative scaffolds, paving the way for more effective therapies and improved patient outcomes.</p>","PeriodicalId":12564,"journal":{"name":"Frontiers in Surgery","volume":"11 ","pages":"1424734"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524941/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fsurg.2024.1424734","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Achilles tendon rupture is a common and debilitating injury that significantly impacts mobility and quality of life. Effective treatment options that promote faster and more complete healing are needed. Fibroblast growth factor-2 (FGF-2) has shown potential in enhancing tendon repair. This study aims to investigate the efficacy of FGF-2 in promoting tendon healing in a rat model of Achilles tendon rupture, providing insights into its potential as a therapeutic option.
Materials and methods: Forty-eight rat hind legs with complete Achilles tendon ruptures were divided into four equal groups: the Sham (S) group (tendon repair only), the Polymer (P) group (tendon repair with scaffold wrapping), the Produced FGF-2 (PF) group (scaffold coated with lab-produced FGF-2), and the Commercial FGF-2 (CF) group (scaffold coated with commercially sourced FGF-2). Histological analyses at two and four weeks post-surgery evaluated healing based on nuclear morphology, vascularity, fibril organization, inflammation, and adipogenesis.
Results: At the end of the second week, no macroscopic healing was observed in one rat each from the S and P groups. By the end of the fourth week, macroscopic healing was observed in all groups. The S and P groups exhibited similarly severe fibril disorganization, pathological adipogenesis, and sustained inflammation, particularly at the fourth week. In contrast, the CF group demonstrated improved tendon healing with increased vascularity and extracellular matrix, lower inflammatory cell infiltration, and better fibril organization. Pathological adipogenesis was absent in the CF group, especially at the fourth week. The PF group showed comparable improvements at the second week but experienced a relapse by the 4th week, with increased inflammation and adipogenesis.
Conclusion: FGF-2 coated scaffolds significantly enhanced tendon healing in a rat Achilles tendon rupture model by improving fibril organization, increasing vascularity, and reducing inflammation and pathological adipogenesis. These findings suggest that FGF-2 could be a promising therapeutic option for accelerating tendon repair. Future perspectives on tendon repair will focus on enhancing FGF-2 delivery using innovative scaffolds, paving the way for more effective therapies and improved patient outcomes.
期刊介绍:
Evidence of surgical interventions go back to prehistoric times. Since then, the field of surgery has developed into a complex array of specialties and procedures, particularly with the advent of microsurgery, lasers and minimally invasive techniques. The advanced skills now required from surgeons has led to ever increasing specialization, though these still share important fundamental principles.
Frontiers in Surgery is the umbrella journal representing the publication interests of all surgical specialties. It is divided into several “Specialty Sections” listed below. All these sections have their own Specialty Chief Editor, Editorial Board and homepage, but all articles carry the citation Frontiers in Surgery.
Frontiers in Surgery calls upon medical professionals and scientists from all surgical specialties to publish their experimental and clinical studies in this journal. By assembling all surgical specialties, which nonetheless retain their independence, under the common umbrella of Frontiers in Surgery, a powerful publication venue is created. Since there is often overlap and common ground between the different surgical specialties, assembly of all surgical disciplines into a single journal will foster a collaborative dialogue amongst the surgical community. This means that publications, which are also of interest to other surgical specialties, will reach a wider audience and have greater impact.
The aim of this multidisciplinary journal is to create a discussion and knowledge platform of advances and research findings in surgical practice today to continuously improve clinical management of patients and foster innovation in this field.