Houmem Slimi, Ala Balti, Sabeur Abid, Mounir Sayadi
{"title":"A combinatorial deep learning method for Alzheimer's disease classification-based merging pretrained networks.","authors":"Houmem Slimi, Ala Balti, Sabeur Abid, Mounir Sayadi","doi":"10.3389/fncom.2024.1444019","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. Despite significant research, AD remains incurable, highlighting the critical need for early diagnosis and intervention to improve patient outcomes. Timely detection plays a crucial role in managing the disease more effectively. Pretrained convolutional neural networks (CNNs) trained on large-scale datasets, such as ImageNet, have been employed for AD classification, providing a head start for developing more accurate models.</p><p><strong>Methods: </strong>This paper proposes a novel hybrid deep learning approach that combines the strengths of two specific pretrained architectures. The proposed model enhances the representation of AD-related patterns by leveraging the feature extraction capabilities of both networks. We validated this model using a large dataset of MRI images from AD patients. Performance was evaluated in terms of classification accuracy and robustness against noise, and the results were compared to several commonly used models in AD detection.</p><p><strong>Results: </strong>The proposed hybrid model demonstrated significant performance improvements over individual models, achieving an accuracy classification rate of 99.85%. Comparative analysis with other models further revealed the superiority of the new architecture, particularly in terms of classification rate and resistance to noise interference.</p><p><strong>Discussion: </strong>The high accuracy and robustness of the proposed hybrid model suggest its potential utility in early AD detection. By improving feature representation through the combination of two pretrained networks, this model could provide clinicians with a more reliable tool for early diagnosis and monitoring of AD progression. This approach holds promise for aiding in timely diagnoses and treatment decisions, contributing to better management of Alzheimer's disease.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1444019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. Despite significant research, AD remains incurable, highlighting the critical need for early diagnosis and intervention to improve patient outcomes. Timely detection plays a crucial role in managing the disease more effectively. Pretrained convolutional neural networks (CNNs) trained on large-scale datasets, such as ImageNet, have been employed for AD classification, providing a head start for developing more accurate models.
Methods: This paper proposes a novel hybrid deep learning approach that combines the strengths of two specific pretrained architectures. The proposed model enhances the representation of AD-related patterns by leveraging the feature extraction capabilities of both networks. We validated this model using a large dataset of MRI images from AD patients. Performance was evaluated in terms of classification accuracy and robustness against noise, and the results were compared to several commonly used models in AD detection.
Results: The proposed hybrid model demonstrated significant performance improvements over individual models, achieving an accuracy classification rate of 99.85%. Comparative analysis with other models further revealed the superiority of the new architecture, particularly in terms of classification rate and resistance to noise interference.
Discussion: The high accuracy and robustness of the proposed hybrid model suggest its potential utility in early AD detection. By improving feature representation through the combination of two pretrained networks, this model could provide clinicians with a more reliable tool for early diagnosis and monitoring of AD progression. This approach holds promise for aiding in timely diagnoses and treatment decisions, contributing to better management of Alzheimer's disease.
前言阿尔茨海默病(AD)是一种进行性神经退行性疾病,以认知能力下降、记忆力减退和日常功能受损为特征。尽管开展了大量研究,但阿尔茨海默病仍无法治愈,这突出表明了早期诊断和干预以改善患者预后的迫切需要。及时发现对更有效地控制疾病起着至关重要的作用。在大规模数据集(如 ImageNet)上训练的预训练卷积神经网络(CNN)已被用于 AD 分类,为开发更精确的模型提供了一个良好的开端:本文提出了一种新型混合深度学习方法,它结合了两种特定预训练架构的优势。通过利用这两种网络的特征提取能力,所提出的模型增强了对注意力缺失症相关模式的表示。我们使用来自 AD 患者的大型 MRI 图像数据集对该模型进行了验证。我们从分类准确性和对噪声的鲁棒性两个方面对其性能进行了评估,并将结果与一些常用的注意力缺失症检测模型进行了比较:结果:与单个模型相比,所提出的混合模型的性能有了显著提高,分类准确率达到 99.85%。与其他模型的对比分析进一步显示了新架构的优越性,尤其是在分类率和抗噪声干扰能力方面:讨论:所提出的混合模型的高准确率和鲁棒性表明,它在早期注意力缺失症检测中具有潜在的实用性。通过结合两个预训练网络来改进特征表示,该模型可以为临床医生提供更可靠的工具,用于早期诊断和监测注意力缺失症的进展。这种方法有望帮助及时做出诊断和治疗决定,为更好地管理阿尔茨海默病做出贡献。
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro