Ali Muhaimil, Saikiran Pendem, Niranjana Sampathilla, Priya P S, Kaushik Nayak, Krishnaraj Chadaga, Anushree Goswami, Obhuli Chandran M, Abhijit Shirlal
{"title":"Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine.","authors":"Ali Muhaimil, Saikiran Pendem, Niranjana Sampathilla, Priya P S, Kaushik Nayak, Krishnaraj Chadaga, Anushree Goswami, Obhuli Chandran M, Abhijit Shirlal","doi":"10.12688/f1000research.154680.2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Low back pain (LBP), the primary cause of disability, is the most common musculoskeletal disorder globally and the primary cause of disability. Magnetic resonance imaging (MRI) studies are inconclusive and less sensitive for identifying and classifying patients with LBP. Hence, this study aimed to investigate the role of artificial intelligence (AI) models in the prediction of LBP using T2 weighted MRI image of the lumbar spine.</p><p><strong>Methods: </strong>This was a prospective case-control study. A total of 200 MRI patients (100 cases and controls each) referred for lumbar spine and whole spine screening were included. The scans were performed using 3.0 Tesla MRI (United Imaging Healthcare). T2 weighted images of the lumbar spine were segmented to extract radiomic features. Machine learning (ML) models, such as random forest, decision tree, logistic regression, K-nearest neighbors, adaboost, and deep learning methods (DL), such as ResNet and GoogleNet, were used, and performance measures were calculated.</p><p><strong>Results: </strong>Our study showed that Random forest and AdaBoost are the most reliable ML models for predicting LBP. Random forest showed high performance with area under curve (AUC) values from 0.83 to 0.88 across all lumbar vertebrae and L2-L3, L3-L4, and L4-L5 intervertebral discs (IVDs), with AUCs of 0.88 the highest at L5-S1 IVD (0.92). Adaboost demonstrated high performance at the L2-L5 vertebrae with AUC values of 0.82 to 0.90, with the highest AUC (0.97) at the L5-S1 IVD. Among the DL models, GoogleNet outperformed the other models at 30 epochs with an accuracy of 0.85, followed by ResNet 18 (30 epochs) with an accuracy of 0.84.</p><p><strong>Conclusion: </strong>The study demonstrated that ML and DL models can effectively predict LBP from MRI T2 weighted image of the lumbar spine. ML and DL models could also enhance the diagnostic accuracy of LBP, potentially leading to better patient management and outcomes.</p>","PeriodicalId":12260,"journal":{"name":"F1000Research","volume":"13 ","pages":"1035"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"F1000Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/f1000research.154680.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Low back pain (LBP), the primary cause of disability, is the most common musculoskeletal disorder globally and the primary cause of disability. Magnetic resonance imaging (MRI) studies are inconclusive and less sensitive for identifying and classifying patients with LBP. Hence, this study aimed to investigate the role of artificial intelligence (AI) models in the prediction of LBP using T2 weighted MRI image of the lumbar spine.
Methods: This was a prospective case-control study. A total of 200 MRI patients (100 cases and controls each) referred for lumbar spine and whole spine screening were included. The scans were performed using 3.0 Tesla MRI (United Imaging Healthcare). T2 weighted images of the lumbar spine were segmented to extract radiomic features. Machine learning (ML) models, such as random forest, decision tree, logistic regression, K-nearest neighbors, adaboost, and deep learning methods (DL), such as ResNet and GoogleNet, were used, and performance measures were calculated.
Results: Our study showed that Random forest and AdaBoost are the most reliable ML models for predicting LBP. Random forest showed high performance with area under curve (AUC) values from 0.83 to 0.88 across all lumbar vertebrae and L2-L3, L3-L4, and L4-L5 intervertebral discs (IVDs), with AUCs of 0.88 the highest at L5-S1 IVD (0.92). Adaboost demonstrated high performance at the L2-L5 vertebrae with AUC values of 0.82 to 0.90, with the highest AUC (0.97) at the L5-S1 IVD. Among the DL models, GoogleNet outperformed the other models at 30 epochs with an accuracy of 0.85, followed by ResNet 18 (30 epochs) with an accuracy of 0.84.
Conclusion: The study demonstrated that ML and DL models can effectively predict LBP from MRI T2 weighted image of the lumbar spine. ML and DL models could also enhance the diagnostic accuracy of LBP, potentially leading to better patient management and outcomes.
F1000ResearchPharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.00
自引率
0.00%
发文量
1646
审稿时长
1 weeks
期刊介绍:
F1000Research publishes articles and other research outputs reporting basic scientific, scholarly, translational and clinical research across the physical and life sciences, engineering, medicine, social sciences and humanities. F1000Research is a scholarly publication platform set up for the scientific, scholarly and medical research community; each article has at least one author who is a qualified researcher, scholar or clinician actively working in their speciality and who has made a key contribution to the article. Articles must be original (not duplications). All research is suitable irrespective of the perceived level of interest or novelty; we welcome confirmatory and negative results, as well as null studies. F1000Research publishes different type of research, including clinical trials, systematic reviews, software tools, method articles, and many others. Reviews and Opinion articles providing a balanced and comprehensive overview of the latest discoveries in a particular field, or presenting a personal perspective on recent developments, are also welcome. See the full list of article types we accept for more information.