{"title":"Developing Generalizable Scoring Functions for Molecular Docking: Challenges and Perspectives.","authors":"Rodrigo Quiroga, Marcos Villarreal","doi":"10.2174/0109298673334469241017053508","DOIUrl":null,"url":null,"abstract":"<p><p>Structure-based drug discovery methods, such as molecular docking and virtual screening, have become invaluable tools in developing novel drugs. At the core of these methods are Scoring Functions (SFs), which predict the binding affinity between ligands and protein targets. This study aims to review and contextualize the challenges and best practices in training novel scoring functions to improve their accuracy and generalizability in predicting protein-ligand binding affinities. Effective training of scoring functions requires careful attention to the quality of training data and methodologies. We emphasize the need for robust training strategies to produce consistent and generalizable SFs. Key considerations include addressing hidden biases and overfitting in machine-learning models, as well as ensuring the use of high-quality, unbiased datasets for both training and evaluation of SFs. Innovative hybrid methods, combining the advantages of empirical and machine-learning approaches, hold promise for outperforming current scoring functions while displaying greater generalizability and versatility.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673334469241017053508","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Structure-based drug discovery methods, such as molecular docking and virtual screening, have become invaluable tools in developing novel drugs. At the core of these methods are Scoring Functions (SFs), which predict the binding affinity between ligands and protein targets. This study aims to review and contextualize the challenges and best practices in training novel scoring functions to improve their accuracy and generalizability in predicting protein-ligand binding affinities. Effective training of scoring functions requires careful attention to the quality of training data and methodologies. We emphasize the need for robust training strategies to produce consistent and generalizable SFs. Key considerations include addressing hidden biases and overfitting in machine-learning models, as well as ensuring the use of high-quality, unbiased datasets for both training and evaluation of SFs. Innovative hybrid methods, combining the advantages of empirical and machine-learning approaches, hold promise for outperforming current scoring functions while displaying greater generalizability and versatility.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.