On the periodic behavior of the generalized Chazy differential equation.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ziwei Zhuang, Changjian Liu, Jiahui Luo
{"title":"On the periodic behavior of the generalized Chazy differential equation.","authors":"Ziwei Zhuang, Changjian Liu, Jiahui Luo","doi":"10.1063/5.0209050","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the periodic behavior of the generalized Chazy differential equation x⃛+|x|qx¨+k|x|qxx˙2=0, where q is a positive integer and k is a real number. We give a pure analysis on the existence of non-trivial periodic solutions for k=q+1 and the non-existence of them for k≠q+1. Our method is based on considering the projections of the orbits onto the phase plane (x,x˙). We find that a non-trivial periodic solution of the equation is equivalent to a closed curve formed by two equilibrium points and two orbits with some specific constraints in the corresponding planar system and that the existence of such closed curves can be obtained by the existence of real zeros of some returning map. Our conclusion covers all q, which completes a recent result.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0209050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the periodic behavior of the generalized Chazy differential equation x⃛+|x|qx¨+k|x|qxx˙2=0, where q is a positive integer and k is a real number. We give a pure analysis on the existence of non-trivial periodic solutions for k=q+1 and the non-existence of them for k≠q+1. Our method is based on considering the projections of the orbits onto the phase plane (x,x˙). We find that a non-trivial periodic solution of the equation is equivalent to a closed curve formed by two equilibrium points and two orbits with some specific constraints in the corresponding planar system and that the existence of such closed curves can be obtained by the existence of real zeros of some returning map. Our conclusion covers all q, which completes a recent result.

论广义查兹微分方程的周期行为。
我们考虑广义恰兹微分方程 x⃛+|x|qx¨+k|x|qxx˙2=0(其中 q 为正整数,k 为实数)的周期行为。我们对 k=q+1 时非小数周期解的存在和 k≠q+1 时非小数周期解的不存在进行了纯粹分析。我们的方法基于考虑轨道在相平面(x,x˙)上的投影。我们发现,方程的非三维周期解等同于由两个平衡点和两个轨道在相应平面系统中的某些特定约束条件形成的闭合曲线,而且这种闭合曲线的存在可以通过某些回归映射的实零点的存在得到。我们的结论涵盖了所有 q,从而完善了一项最新成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信