LC-MS metabolomics uncovers potential biomarkers of semen cryo-injury in goats.

IF 2.4 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Shun Wu, Guolin Chen, Siyuan Zhan, Linjie Wang, Jiaxue Cao, Jiazhong Guo, Li Li, Hongping Zhang, Lili Niu, Tao Zhong
{"title":"LC-MS metabolomics uncovers potential biomarkers of semen cryo-injury in goats.","authors":"Shun Wu, Guolin Chen, Siyuan Zhan, Linjie Wang, Jiaxue Cao, Jiazhong Guo, Li Li, Hongping Zhang, Lili Niu, Tao Zhong","doi":"10.5713/ab.24.0435","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Semen cryopreservation acts a crucial role in enhancing breed improvement and conserving genetic resources. However, it often leads to decreased sperm activity and reduced pregnancy rates. Despite significant advancements in semen freezing techniques for goats, the precise factors and mechanisms causing cryo-injury remain unclear.</p><p><strong>Methods: </strong>In this study, we examined the motility characteristics of fresh semen versus frozen-thawed semen and investigated changes in the metabolite profiles of seminal plasma using liquid chromatograph-mass spectrometry (LC-MS).</p><p><strong>Results: </strong>A total of 364 differentially expressed metabolites (DEMs) were identified between fresh and frozen-thawed semen samples. Among these, 185 metabolites were significantly up-regulated, while 179 were down-regulated (p<0.05). The majority of these DEMs belonged to lipids and lipid-like molecules, as well as organic acids and derivatives. The Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that these DEMs were primarily involved in pathways related to amino acid synthesis and metabolism. Additionally, metabolite set enrichment analysis (MSEA) underscored the critical role of amino acid synthesis and metabolic pathways in semen cryopreservation. Specific metabolites such as alanine, proline, phenylalanine, tryptophan, tyrosine, adenosine, citric acid, flavin adenine dinucleotide (FAD), and choline emerged as potential biomarkers for sperm cryo-injury in goats.</p><p><strong>Conclusion: </strong>These findings provide valuable insights into enhancing the quality of semen cryopreservation in goats, contributing to improved breeding and genetic resource conservation efforts.</p>","PeriodicalId":7825,"journal":{"name":"Animal Bioscience","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Bioscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5713/ab.24.0435","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Semen cryopreservation acts a crucial role in enhancing breed improvement and conserving genetic resources. However, it often leads to decreased sperm activity and reduced pregnancy rates. Despite significant advancements in semen freezing techniques for goats, the precise factors and mechanisms causing cryo-injury remain unclear.

Methods: In this study, we examined the motility characteristics of fresh semen versus frozen-thawed semen and investigated changes in the metabolite profiles of seminal plasma using liquid chromatograph-mass spectrometry (LC-MS).

Results: A total of 364 differentially expressed metabolites (DEMs) were identified between fresh and frozen-thawed semen samples. Among these, 185 metabolites were significantly up-regulated, while 179 were down-regulated (p<0.05). The majority of these DEMs belonged to lipids and lipid-like molecules, as well as organic acids and derivatives. The Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that these DEMs were primarily involved in pathways related to amino acid synthesis and metabolism. Additionally, metabolite set enrichment analysis (MSEA) underscored the critical role of amino acid synthesis and metabolic pathways in semen cryopreservation. Specific metabolites such as alanine, proline, phenylalanine, tryptophan, tyrosine, adenosine, citric acid, flavin adenine dinucleotide (FAD), and choline emerged as potential biomarkers for sperm cryo-injury in goats.

Conclusion: These findings provide valuable insights into enhancing the quality of semen cryopreservation in goats, contributing to improved breeding and genetic resource conservation efforts.

LC-MS 代谢组学发现山羊精液冷冻损伤的潜在生物标志物。
目的:精液冷冻在促进品种改良和保护遗传资源方面起着至关重要的作用。然而,冷冻精液往往会导致精子活动力下降和受孕率降低。尽管山羊精液冷冻技术取得了重大进展,但导致冷冻损伤的确切因素和机制仍不清楚:在这项研究中,我们检测了新鲜精液与冷冻解冻精液的运动特性,并使用液相色谱-质谱法(LC-MS)研究了精浆代谢物谱的变化:结果:在新鲜精液样本和冷冻解冻精液样本之间共鉴定出 364 种差异表达代谢物 (DEM)。其中,185 种代谢物明显上调,179 种下调(p):这些发现为提高山羊精液冷冻保存的质量提供了有价值的见解,有助于改进育种和遗传资源保护工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Animal Bioscience
Animal Bioscience AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
5.00
自引率
0.00%
发文量
223
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信