{"title":"Overlooked Role of Electrostatic Interactions in HER Kinetics on MXenes: Beyond the Conventional Descriptor Δ<i>G</i> ∼ 0 to Identify the Real Active Site.","authors":"Xiang Huang, Xiangting Hu, Jiong Wang, Hu Xu","doi":"10.1021/acs.jpclett.4c02588","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the atomic-level mechanism of the hydrogen evolution reaction (HER) on MXene materials is crucial for developing affordable HER catalysts, while their complex surface terminations present a substantial challenge. Herein, employing constant-potential grand canonical density functional theory calculations, we elucidate the reaction kinetics of the HER on MXenes with various surface terminations by taking experimentally reported Mo<sub>2</sub>C as a prototype. We observe a contradictory scenario on Mo<sub>2</sub>C MXene when using conventional thermodynamic descriptor Δ<i>G</i><sub>H*</sub> (hydrogen binding energy). Both competing surface phases that emerge close to the equilibrium potential meet the Δ<i>G</i><sub>H*</sub> ∼ 0 criterion, while they exhibit distinctly different reaction kinetics. Contrary to previous studies that identified surface *O species as active sites, our research reveals that these *O sites are kinetically inert for producing H<sub>2</sub> but are easily reduced to H<sub>2</sub>O. Consequently, the surface Mo atoms, exposed from the rapid reduction of the surface *O species, serve as the actual active sites catalyzing the HER via the Volmer-Heyrovsky mechanism, as confirmed by experimental studies. Our findings highlight the overlooked role of electrostatic repulsion in HER kinetics, a factor not captured by thermodynamic descriptor Δ<i>G</i><sub>H*</sub>. This work provides new insights into the HER mechanism and emphasizes the importance of kinetic investigations for a comprehensive understanding of the HER.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02588","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the atomic-level mechanism of the hydrogen evolution reaction (HER) on MXene materials is crucial for developing affordable HER catalysts, while their complex surface terminations present a substantial challenge. Herein, employing constant-potential grand canonical density functional theory calculations, we elucidate the reaction kinetics of the HER on MXenes with various surface terminations by taking experimentally reported Mo2C as a prototype. We observe a contradictory scenario on Mo2C MXene when using conventional thermodynamic descriptor ΔGH* (hydrogen binding energy). Both competing surface phases that emerge close to the equilibrium potential meet the ΔGH* ∼ 0 criterion, while they exhibit distinctly different reaction kinetics. Contrary to previous studies that identified surface *O species as active sites, our research reveals that these *O sites are kinetically inert for producing H2 but are easily reduced to H2O. Consequently, the surface Mo atoms, exposed from the rapid reduction of the surface *O species, serve as the actual active sites catalyzing the HER via the Volmer-Heyrovsky mechanism, as confirmed by experimental studies. Our findings highlight the overlooked role of electrostatic repulsion in HER kinetics, a factor not captured by thermodynamic descriptor ΔGH*. This work provides new insights into the HER mechanism and emphasizes the importance of kinetic investigations for a comprehensive understanding of the HER.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.