High-Resolution Spectroscopy of the Intermediate Impurity States near a Quantum Phase Transition.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2024-11-13 Epub Date: 2024-11-01 DOI:10.1021/acs.nanolett.4c03376
Yao Zhang, Ruijing Sun, Tao Xie, Zhen-Yu Liu, Rui Wang, Wenhao Zhang, Chaofei Liu, Ying-Shuang Fu
{"title":"High-Resolution Spectroscopy of the Intermediate Impurity States near a Quantum Phase Transition.","authors":"Yao Zhang, Ruijing Sun, Tao Xie, Zhen-Yu Liu, Rui Wang, Wenhao Zhang, Chaofei Liu, Ying-Shuang Fu","doi":"10.1021/acs.nanolett.4c03376","DOIUrl":null,"url":null,"abstract":"<p><p>The intermediate behavior near a quantum phase transition is crucial for understanding the quantum criticality of various competing phases and their separate origins, yet it remains unexplored for the multiple Yu-Shiba-Rusinov (YSR) states. Here, we investigated the detailed spectroscopic change of the exchange-coupling-dependent YSR states near a quantum phase transition. The initially developed one pair of YSR states, induced by the Fe vacancy in monolayer Fe(Te,Se) superconductor, are clearly resolved with high resolution showing an evolution into two pairs of YSR peaks yet with dichotomy in their spectral features as they enter the quantum phase transition region. Spectral-weight analysis suggests that the double YSR pairs occur as a result of field splitting by the magnetic anisotropy. Our findings unveil the intermediate region of a quantum phase transition with a magnetic anisotropy-induced splitting of the YSR resonance, and highlight a prospect for developing functional electronics based on the flexibly controllable multiple quantum states.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03376","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The intermediate behavior near a quantum phase transition is crucial for understanding the quantum criticality of various competing phases and their separate origins, yet it remains unexplored for the multiple Yu-Shiba-Rusinov (YSR) states. Here, we investigated the detailed spectroscopic change of the exchange-coupling-dependent YSR states near a quantum phase transition. The initially developed one pair of YSR states, induced by the Fe vacancy in monolayer Fe(Te,Se) superconductor, are clearly resolved with high resolution showing an evolution into two pairs of YSR peaks yet with dichotomy in their spectral features as they enter the quantum phase transition region. Spectral-weight analysis suggests that the double YSR pairs occur as a result of field splitting by the magnetic anisotropy. Our findings unveil the intermediate region of a quantum phase transition with a magnetic anisotropy-induced splitting of the YSR resonance, and highlight a prospect for developing functional electronics based on the flexibly controllable multiple quantum states.

Abstract Image

量子相变附近中间杂质态的高分辨率光谱。
量子相变附近的中间行为对于理解各种竞争相的量子临界性及其各自的起源至关重要,然而,对于多重 Yu-Shiba-Rusinov (YSR)态来说,这一点仍未得到探索。在这里,我们研究了量子相变附近依赖交换偶联的 YSR 态的详细光谱变化。由单层铁(Te,Se)超导体中的铁空位所诱导的一对 YSR 状态在进入量子相变区后,以高分辨率清晰地分辨出演化成两对 YSR 峰的光谱特征。光谱重量分析表明,双 YSR 对的出现是磁场各向异性分裂的结果。我们的研究结果揭示了磁各向异性诱导 YSR 共振分裂的量子相变中间区域,并凸显了基于灵活可控的多重量子态开发功能电子器件的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信