Formation and Dynamics of Imidazole Supramolecular Chains Investigated by Deep Potential Molecular Dynamics Simulation.

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Langmuir Pub Date : 2024-11-12 Epub Date: 2024-11-01 DOI:10.1021/acs.langmuir.4c02888
Jianwei Zhang, Jinyu Lei, Pu Feng, Wenduo Chen, Jiajia Zhou, Guangzhao Zhang
{"title":"Formation and Dynamics of Imidazole Supramolecular Chains Investigated by Deep Potential Molecular Dynamics Simulation.","authors":"Jianwei Zhang, Jinyu Lei, Pu Feng, Wenduo Chen, Jiajia Zhou, Guangzhao Zhang","doi":"10.1021/acs.langmuir.4c02888","DOIUrl":null,"url":null,"abstract":"<p><p>Imidazole-based materials have attracted considerable attention due to their promising potential for facilitating anhydrous proton transport at high temperatures. Herein, a machine learning-based deep potential (DP) model for bulk imidazole with first-principles accuracy is developed. The trained model exhibits remarkable accuracy in predicting energies and forces, with minor errors of 4.71 × 10<sup>-4</sup> eV/atom and 3.23 × 10<sup>-2</sup> eV/Å, respectively. Utilizing DP molecular dynamics simulations, we have systematically investigated the temperature-dependent formation and dynamics of imidazole supramolecular chains through the partial radial distribution function, quantification of hydrogen bond numbers, incoherent intermediate scattering function, and diffusion coefficient. The findings reveal the influence of temperature on the proton transport path following either the \"Grotthuss\" and \"vehicle\" mechanism.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02888","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Imidazole-based materials have attracted considerable attention due to their promising potential for facilitating anhydrous proton transport at high temperatures. Herein, a machine learning-based deep potential (DP) model for bulk imidazole with first-principles accuracy is developed. The trained model exhibits remarkable accuracy in predicting energies and forces, with minor errors of 4.71 × 10-4 eV/atom and 3.23 × 10-2 eV/Å, respectively. Utilizing DP molecular dynamics simulations, we have systematically investigated the temperature-dependent formation and dynamics of imidazole supramolecular chains through the partial radial distribution function, quantification of hydrogen bond numbers, incoherent intermediate scattering function, and diffusion coefficient. The findings reveal the influence of temperature on the proton transport path following either the "Grotthuss" and "vehicle" mechanism.

Abstract Image

通过深电位分子动力学模拟研究咪唑超分子链的形成和动力学。
咪唑基材料因其在高温下促进无水质子传输的巨大潜力而备受关注。在此,我们开发了一种基于机器学习的、具有第一原理精度的块状咪唑深度势能(DP)模型。训练有素的模型在预测能量和作用力方面表现出卓越的准确性,误差分别为 4.71 × 10-4 eV/atom 和 3.23 × 10-2 eV/Å。利用 DP 分子动力学模拟,我们通过部分径向分布函数、氢键数量化、非相干中间散射函数和扩散系数,系统地研究了咪唑超分子链的形成和动力学随温度的变化。研究结果揭示了温度对质子在 "格罗图斯 "和 "载体 "机制下传输路径的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信